# Calculator search results

Formula
Expand the expression
Factorize the expression
$6 \left( 2y-3 \right) -8 \left( -y+5 \right)$
$20 y - 58$
Organize polynomials
$\color{#FF6800}{ 6 } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) - 8 \left ( - y + 5 \right )$
 Organize the expression with the distributive law 
$\color{#FF6800}{ 12 } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 18 } - 8 \left ( - y + 5 \right )$
$12 y - 18 \color{#FF6800}{ - } \color{#FF6800}{ 8 } \left ( \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \right )$
 Organize the expression with the distributive law 
$12 y - 18 + \color{#FF6800}{ 8 } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 40 }$
$\color{#FF6800}{ 12 } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 18 } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 40 }$
 Organize the similar terms 
$\left ( \color{#FF6800}{ 12 } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \right ) \color{#FF6800}{ y } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 18 } \color{#FF6800}{ - } \color{#FF6800}{ 40 } \right )$
$\left ( \color{#FF6800}{ 12 } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \right ) \color{#FF6800}{ y } + \left ( - 18 - 40 \right )$
 Arrange the constant term 
$\color{#FF6800}{ 20 } \color{#FF6800}{ y } + \left ( - 18 - 40 \right )$
$20 y + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 18 } \color{#FF6800}{ - } \color{#FF6800}{ 40 } \right )$
 Arrange the constant term 
$20 y \color{#FF6800}{ - } \color{#FF6800}{ 58 }$
$2 \left ( 10 y - 29 \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ 6 } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 8 } \left ( \color{#FF6800}{ - } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \right )$
 Expand the expression 
$\color{#FF6800}{ 20 } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 58 }$
$\color{#FF6800}{ 20 } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 58 }$
 Bind the expressions with the common factor $2$
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 10 } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 29 } \right )$
Solution search results