Calculator search results

Formula
Find the difference
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
$6 \dfrac{ 8 }{ 25 } -4 \dfrac{ 3 }{ 5 }$
$\dfrac { 43 } { 25 }$
Find the difference
$\color{#FF6800}{ 6 \dfrac { 8 } { 25 } } - 4 \dfrac { 3 } { 5 }$
$ $ Convert mixed number into improper fraction $ $
$\color{#FF6800}{ \dfrac { 158 } { 25 } } - 4 \dfrac { 3 } { 5 }$
$\dfrac { 158 } { 25 } \color{#FF6800}{ - } \color{#FF6800}{ 4 \dfrac { 3 } { 5 } }$
$ $ Convert mixed number into improper fraction $ $
$\dfrac { 158 } { 25 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 23 } { 5 } }$
$\dfrac { 158 } { \color{#FF6800}{ 25 } } - \dfrac { 23 } { \color{#FF6800}{ 5 } }$
$ $ The smallest common multiple in denominator is $ 25$
$\dfrac { 158 } { \color{#FF6800}{ 25 } } - \dfrac { 23 } { \color{#FF6800}{ 5 } }$
$\dfrac { 158 } { 25 } - \dfrac { 23 } { 5 }$
$ $ Multiply the denominator and the numerator so that the denominator is the smallest common multiple $ $
$\dfrac { 158 } { 25 } - \dfrac { 23 \times \color{#FF6800}{ 5 } } { 5 \times \color{#FF6800}{ 5 } }$
$\color{#FF6800}{ \dfrac { 158 } { 25 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 23 \times 5 } { 5 \times 5 } }$
$ $ Organize the expression $ $
$\color{#FF6800}{ \dfrac { 158 } { 25 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 115 } { 25 } }$
$\color{#FF6800}{ \dfrac { 158 } { 25 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 115 } { 25 } }$
$ $ Since the denominator is the same as $ 25 $ , combine the fractions into one $ $
$\color{#FF6800}{ \dfrac { 158 - 115 } { 25 } }$
$\dfrac { \color{#FF6800}{ 158 } \color{#FF6800}{ - } \color{#FF6800}{ 115 } } { 25 }$
$ $ Subtract $ 115 $ from $ 158$
$\dfrac { \color{#FF6800}{ 43 } } { 25 }$
Solution search results
search-thumbnail-Can you answer this? 
$20$ $25$ 

$18$ 

$\left($ 
$\left(A\right)$ $A\right)2$ 
$21frac\left(5\right)\left(9\right)$ \) 
$\left(B\right)$ $B\right)$ $1\left(211$ 
$\left(C\right)$ $1\left(21$ $21+rac\left(7\right)+9\right)$ \) 
$\left(D\right)$ $1\left(2\right)$ 2\frac{8}{9} 
$ac\left(8\right)\left(9\right)$ \) $9:18PM\sqrt{} $
1st-6th grade
Algebra
search-thumbnail-$11.$ Question $11$ 
Solve the $:$ $folloMlng'$ $0<θ<90^{°}$ 
$\left(1\right)$ $2sin^{2}θ=1\right)$ $\left(rac\left(3\right)\left(2\right)\right)$ 
$\left(11\right)$ $3tan^{2}θ+2=3$ 
$\left(111\right)cos^{2}θ$ $11rac\left(1\right)\left(4\right)\right)=$ 
$c\left(1\right)\left(4\right)\right)=11113c\left(1\right)\left(2\right)\right)$
10th-13th grade
Trigonometry
search-thumbnail-Which of the following rational numbers are 
equivalent? 
$0Ptionsy$ 
A \frac{5}{6}, \frac{30}{36} 
B $s\sqrt{rac\left(} -2\right)\left(3\right)\sqrt{1rac} \sqrt{4\right)16\right)4} $ 
C $s\sqrt{11aC\left(} -4\right)1-7b,\sqrt{1rac\left(16\sqrt{35\right)9} } $ 
D \frac{1}{2},\frac{3}{8}
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo