# Calculator search results

Formula
Find the difference
$6 \dfrac{ 8 }{ 25 } -4 \dfrac{ 3 }{ 5 }$
$\dfrac { 43 } { 25 }$
Find the difference
$\color{#FF6800}{ 6 \dfrac { 8 } { 25 } } - 4 \dfrac { 3 } { 5 }$
 Convert mixed number into improper fraction 
$\color{#FF6800}{ \dfrac { 158 } { 25 } } - 4 \dfrac { 3 } { 5 }$
$\dfrac { 158 } { 25 } \color{#FF6800}{ - } \color{#FF6800}{ 4 \dfrac { 3 } { 5 } }$
 Convert mixed number into improper fraction 
$\dfrac { 158 } { 25 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 23 } { 5 } }$
$\dfrac { 158 } { \color{#FF6800}{ 25 } } - \dfrac { 23 } { \color{#FF6800}{ 5 } }$
 The smallest common multiple in denominator is $25$
$\dfrac { 158 } { \color{#FF6800}{ 25 } } - \dfrac { 23 } { \color{#FF6800}{ 5 } }$
$\dfrac { 158 } { 25 } - \dfrac { 23 } { 5 }$
 Multiply the denominator and the numerator so that the denominator is the smallest common multiple 
$\dfrac { 158 } { 25 } - \dfrac { 23 \times \color{#FF6800}{ 5 } } { 5 \times \color{#FF6800}{ 5 } }$
$\color{#FF6800}{ \dfrac { 158 } { 25 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 23 \times 5 } { 5 \times 5 } }$
 Organize the expression 
$\color{#FF6800}{ \dfrac { 158 } { 25 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 115 } { 25 } }$
$\color{#FF6800}{ \dfrac { 158 } { 25 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 115 } { 25 } }$
 Since the denominator is the same as $25$ , combine the fractions into one 
$\color{#FF6800}{ \dfrac { 158 - 115 } { 25 } }$
$\dfrac { \color{#FF6800}{ 158 } \color{#FF6800}{ - } \color{#FF6800}{ 115 } } { 25 }$
 Subtract $115$ from $158$
$\dfrac { \color{#FF6800}{ 43 } } { 25 }$
Solution search results