# Calculator search results

Formula
Expand the expression
Factorize the expression
$5x- [ x-2 \{ 3x- \left( x+4 \right) \} ]$
$8 x - 8$
Organize polynomials
$5 x - \left ( x - 2 \left ( 3 x \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \right ) \right )$
 Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses 
$5 x - \left ( x - 2 \left ( 3 x \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \right )$
$5 x - \left ( x - 2 \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \right )$
 Organize the similar terms 
$5 x - \left ( x - 2 \left ( \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \right )$
$5 x - \left ( x - 2 \left ( \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } - 4 \right ) \right )$
 Arrange the constant term 
$5 x - \left ( x - 2 \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } - 4 \right ) \right )$
$5 x - \left ( x \color{#FF6800}{ - } \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \right )$
 Organize the expression with the distributive law 
$5 x - \left ( x \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } + \color{#FF6800}{ 8 } \right )$
$5 x - \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \right )$
 Organize the similar terms 
$5 x - \left ( \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \right )$
$5 x - \left ( \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ x } + 8 \right )$
 Arrange the constant term 
$5 x - \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } + 8 \right )$
$5 x \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \right )$
 Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses 
$5 x + \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 8 }$
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 8 }$
 Organize the similar terms 
$\left ( \color{#FF6800}{ 5 } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 8 }$
$\left ( \color{#FF6800}{ 5 } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ x } - 8$
 Arrange the constant term 
$\color{#FF6800}{ 8 } \color{#FF6800}{ x } - 8$
$8 \left ( x - 1 \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \right ) \right )$
 Expand the expression 
$\color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 8 }$
$\color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 8 }$
 Bind the expressions with the common factor $8$
$\color{#FF6800}{ 8 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
Solution search results