Calculator search results

Formula
Solve the equation
Graph
$y = 5 x + 6$
$y = 10 x + 5$
$x$Intercept
$\left ( - \dfrac { 6 } { 5 } , 0 \right )$
$y$Intercept
$\left ( 0 , 6 \right )$
$x$Intercept
$\left ( - \dfrac { 1 } { 2 } , 0 \right )$
$y$Intercept
$\left ( 0 , 5 \right )$
$5x+6 = 10x+5$
$x = \dfrac { 1 } { 5 }$
 Solve a solution to $x$
$5 x + 6 = \color{#FF6800}{ 10 } \color{#FF6800}{ x } + 5$
 Move the variable to the left-hand side and change the symbol 
$5 x + 6 \color{#FF6800}{ - } \color{#FF6800}{ 10 } \color{#FF6800}{ x } = 5$
$5 x \color{#FF6800}{ + } \color{#FF6800}{ 6 } - 10 x = 5$
 Move the constant to the right side and change the sign 
$5 x - 10 x = 5 \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 10 } \color{#FF6800}{ x } = 5 - 6$
 Organize the expression 
$\color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } = 5 - 6$
$- 5 x = \color{#FF6800}{ 5 } \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
 Subtract $6$ from $5$
$- 5 x = \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
 Change the sign of both sides of the equation 
$5 x = 1$
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } = \color{#FF6800}{ 1 }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 1 } { 5 } }$
 그래프 보기 
Graph
Solution search results