qanda-logo
apple logo
google play logo

Calculator search results

Formula
Expand the expression
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Factorize the expression
Answer
circle-check-icon
expand-arrow-icon
$5x \left( x-1 \right) - \{ 3x \left( 2x-3 \right) - \left( -4x ^{ 2 } +x-1 \right) \}$
$- 5 x ^ { 2 } + 5 x - 1$
Organize polynomials
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) - \left ( 3 x \left ( 2 x - 3 \right ) - \left ( - 4 x ^ { 2 } + x - 1 \right ) \right )$
$ $ Organize the expression with the distributive law $ $
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } - \left ( 3 x \left ( 2 x - 3 \right ) - \left ( - 4 x ^ { 2 } + x - 1 \right ) \right )$
$5 x ^ { 2 } - 5 x - \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) - \left ( - 4 x ^ { 2 } + x - 1 \right ) \right )$
$ $ Organize the expression with the distributive law $ $
$5 x ^ { 2 } - 5 x - \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ x } - \left ( - 4 x ^ { 2 } + x - 1 \right ) \right )$
$5 x ^ { 2 } - 5 x - \left ( 6 x ^ { 2 } - 9 x \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \right )$
$ $ Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses $ $
$5 x ^ { 2 } - 5 x - \left ( 6 x ^ { 2 } - 9 x + \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } + \color{#FF6800}{ 1 } \right )$
$5 x ^ { 2 } - 5 x - \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
$ $ Organize the similar terms $ $
$5 x ^ { 2 } - 5 x - \left ( \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
$5 x ^ { 2 } - 5 x - \left ( \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \left ( - 9 - 1 \right ) x + 1 \right )$
$ $ Arrange the constant term $ $
$5 x ^ { 2 } - 5 x - \left ( \color{#FF6800}{ 10 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \left ( - 9 - 1 \right ) x + 1 \right )$
$5 x ^ { 2 } - 5 x - \left ( 10 x ^ { 2 } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } + 1 \right )$
$ $ Arrange the constant term $ $
$5 x ^ { 2 } - 5 x - \left ( 10 x ^ { 2 } \color{#FF6800}{ - } \color{#FF6800}{ 10 } \color{#FF6800}{ x } + 1 \right )$
$5 x ^ { 2 } - 5 x \color{#FF6800}{ - } \left ( \color{#FF6800}{ 10 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 10 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
$ $ Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses $ $
$5 x ^ { 2 } - 5 x \color{#FF6800}{ - } \color{#FF6800}{ 10 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 10 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 10 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 10 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$ $ Organize the similar terms $ $
$\left ( \color{#FF6800}{ 5 } \color{#FF6800}{ - } \color{#FF6800}{ 10 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ + } \color{#FF6800}{ 10 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$\left ( \color{#FF6800}{ 5 } \color{#FF6800}{ - } \color{#FF6800}{ 10 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \left ( - 5 + 10 \right ) x - 1$
$ $ Arrange the constant term $ $
$\color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \left ( - 5 + 10 \right ) x - 1$
$- 5 x ^ { 2 } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ + } \color{#FF6800}{ 10 } \right ) \color{#FF6800}{ x } - 1$
$ $ Arrange the constant term $ $
$- 5 x ^ { 2 } + \color{#FF6800}{ 5 } \color{#FF6800}{ x } - 1$
$- \left ( 5 x ^ { 2 } - 5 x + 1 \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \right )$
$ $ Expand the expression $ $
$\color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$ $ Bind the expressions with the common factor $ - 1$
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ 5 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
search-thumbnail-Given the set of ordered pairs $\left(\left(-7.0\right),\left(-6,5\right),\left(-5,-3\right),\left(-1,2\right)$ $\left(1,6\right),\left(2,-2\right)$ $\left(5,3\right)\left(7,-8\right)\right)$ 
Find f(7)fAleft(7\right) 
O a 
O b -8 
6. 
$5$
7th-9th grade
Algebra
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logo
google play logo