# Calculator search results

Formula
Expand the expression
Factorize the expression
$5x \left( x-1 \right) - \{ 3x \left( 2x-3 \right) - \left( -4x ^{ 2 } +x-1 \right) \}$
$- 5 x ^ { 2 } + 5 x - 1$
Organize polynomials
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) - \left ( 3 x \left ( 2 x - 3 \right ) - \left ( - 4 x ^ { 2 } + x - 1 \right ) \right )$
 Organize the expression with the distributive law 
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } - \left ( 3 x \left ( 2 x - 3 \right ) - \left ( - 4 x ^ { 2 } + x - 1 \right ) \right )$
$5 x ^ { 2 } - 5 x - \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) - \left ( - 4 x ^ { 2 } + x - 1 \right ) \right )$
 Organize the expression with the distributive law 
$5 x ^ { 2 } - 5 x - \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ x } - \left ( - 4 x ^ { 2 } + x - 1 \right ) \right )$
$5 x ^ { 2 } - 5 x - \left ( 6 x ^ { 2 } - 9 x \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \right )$
 Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses 
$5 x ^ { 2 } - 5 x - \left ( 6 x ^ { 2 } - 9 x + \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } + \color{#FF6800}{ 1 } \right )$
$5 x ^ { 2 } - 5 x - \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
 Organize the similar terms 
$5 x ^ { 2 } - 5 x - \left ( \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
$5 x ^ { 2 } - 5 x - \left ( \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \left ( - 9 - 1 \right ) x + 1 \right )$
 Arrange the constant term 
$5 x ^ { 2 } - 5 x - \left ( \color{#FF6800}{ 10 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \left ( - 9 - 1 \right ) x + 1 \right )$
$5 x ^ { 2 } - 5 x - \left ( 10 x ^ { 2 } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } + 1 \right )$
 Arrange the constant term 
$5 x ^ { 2 } - 5 x - \left ( 10 x ^ { 2 } \color{#FF6800}{ - } \color{#FF6800}{ 10 } \color{#FF6800}{ x } + 1 \right )$
$5 x ^ { 2 } - 5 x \color{#FF6800}{ - } \left ( \color{#FF6800}{ 10 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 10 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
 Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses 
$5 x ^ { 2 } - 5 x \color{#FF6800}{ - } \color{#FF6800}{ 10 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 10 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 10 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 10 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
 Organize the similar terms 
$\left ( \color{#FF6800}{ 5 } \color{#FF6800}{ - } \color{#FF6800}{ 10 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ + } \color{#FF6800}{ 10 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$\left ( \color{#FF6800}{ 5 } \color{#FF6800}{ - } \color{#FF6800}{ 10 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \left ( - 5 + 10 \right ) x - 1$
 Arrange the constant term 
$\color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \left ( - 5 + 10 \right ) x - 1$
$- 5 x ^ { 2 } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ + } \color{#FF6800}{ 10 } \right ) \color{#FF6800}{ x } - 1$
 Arrange the constant term 
$- 5 x ^ { 2 } + \color{#FF6800}{ 5 } \color{#FF6800}{ x } - 1$
$- \left ( 5 x ^ { 2 } - 5 x + 1 \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ 5 } \color{#FF6800}{ x } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \right )$
 Expand the expression 
$\color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
 Bind the expressions with the common factor $- 1$
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ 5 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
Solution search results