# Calculator search results

Formula
Calculate the value
$5n ^{ 2 } -11mn+6m ^{ 2 } \div m-n$
$- 11 m n + 6 m + 5 n ^ { 2 } - n$
Arrange the rational expression
$5 n ^ { 2 } - 11 m n + 6 m ^ { 2 } \div \color{#FF6800}{ m } - n$
 If the exponent is omitted, the exponent of that term is equal to 1 
$5 n ^ { 2 } - 11 m n + 6 m ^ { 2 } \div \color{#FF6800}{ m } ^ { \color{#FF6800}{ 1 } } - n$
$5 n ^ { 2 } - 11 m n + 6 m ^ { 2 } \div \color{#FF6800}{ m } ^ { \color{#FF6800}{ 1 } } - n$
 Convert the division to multiplication and the exponent to the opposite symbol 
$5 n ^ { 2 } - 11 m n + 6 m ^ { 2 } \color{#FF6800}{ m } ^ { \color{#FF6800}{ - } \color{#FF6800}{ 1 } } - n$
$5 n ^ { 2 } - 11 m n + 6 \color{#FF6800}{ m } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ m } ^ { \color{#FF6800}{ - } \color{#FF6800}{ 1 } } - n$
 Add the exponent as the base is the same 
$5 n ^ { 2 } - 11 m n + 6 \color{#FF6800}{ m } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } } - n$
$5 n ^ { 2 } - 11 m n + 6 m ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } } - n$
 Subtract $1$ from $2$
$5 n ^ { 2 } - 11 m n + 6 m ^ { \color{#FF6800}{ 1 } } - n$
$5 n ^ { 2 } - 11 m n + 6 m ^ { \color{#FF6800}{ 1 } } - n$
 If the exponent is 1, get rid of it as it is unnecessary 
$5 n ^ { 2 } - 11 m n + 6 m - n$
$\color{#FF6800}{ 5 } \color{#FF6800}{ n } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 11 } \color{#FF6800}{ m } \color{#FF6800}{ n } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ m } \color{#FF6800}{ - } \color{#FF6800}{ n }$
 Organize the expression 
$\color{#FF6800}{ - } \color{#FF6800}{ 11 } \color{#FF6800}{ m } \color{#FF6800}{ n } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ m } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \color{#FF6800}{ n } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ n }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture