qanda-logo
search-icon
Symbol

Calculator search results

Solve the inequality
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Graph
$5 \left ( 6 - 2 x \right ) > 4 \left ( 3 - 2 x \right )$
$5 \left ( 6 - 2 x \right ) > 4 \left ( 3 - 2 x \right )$
Solution of inequality
$x < 9$
$x < 9$
$ $ Solve a solution to $ x$
$\color{#FF6800}{ 5 } \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \right ) > 4 \left ( 3 - 2 x \right )$
$ $ Multiply each term in parentheses by $ 5$
$\color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x } > 4 \left ( 3 - 2 x \right )$
$5 \times 6 + 5 \times \left ( - 2 \right ) x > \color{#FF6800}{ 4 } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \right )$
$ $ Multiply each term in parentheses by $ 4$
$5 \times 6 + 5 \times \left ( - 2 \right ) x > \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x }$
$\color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 6 } + 5 \times \left ( - 2 \right ) x > 4 \times 3 + 4 \times \left ( - 2 \right ) x$
$ $ Multiply $ 5 $ and $ 6$
$\color{#FF6800}{ 30 } + 5 \times \left ( - 2 \right ) x > 4 \times 3 + 4 \times \left ( - 2 \right ) x$
$30 + \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x } > 4 \times 3 + 4 \times \left ( - 2 \right ) x$
$ $ Simplify the expression $ $
$30 \color{#FF6800}{ - } \color{#FF6800}{ 10 } \color{#FF6800}{ x } > 4 \times 3 + 4 \times \left ( - 2 \right ) x$
$30 - 10 x > \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } + 4 \times \left ( - 2 \right ) x$
$ $ Multiply $ 4 $ and $ 3$
$30 - 10 x > \color{#FF6800}{ 12 } + 4 \times \left ( - 2 \right ) x$
$30 - 10 x > 12 + \color{#FF6800}{ 4 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x }$
$ $ Simplify the expression $ $
$30 - 10 x > 12 \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x }$
$\color{#FF6800}{ 30 } \color{#FF6800}{ - } \color{#FF6800}{ 10 } \color{#FF6800}{ x } > 12 - 8 x$
$ $ Organize the expression $ $
$\color{#FF6800}{ - } \color{#FF6800}{ 10 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 30 } > 12 - 8 x$
$- 10 x + 30 > \color{#FF6800}{ 12 } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x }$
$ $ Organize the expression $ $
$- 10 x + 30 > \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 12 }$
$- 10 x + 30 > \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } + 12$
$ $ Move the variable to the left-hand side and change the symbol $ $
$- 10 x + 30 \color{#FF6800}{ + } \color{#FF6800}{ 8 } \color{#FF6800}{ x } > 12$
$- 10 x \color{#FF6800}{ + } \color{#FF6800}{ 30 } + 8 x > 12$
$ $ Move the constant to the right side and change the sign $ $
$- 10 x + 8 x > 12 \color{#FF6800}{ - } \color{#FF6800}{ 30 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 10 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \color{#FF6800}{ x } > 12 - 30$
$ $ Organize the expression $ $
$\color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } > 12 - 30$
$- 2 x > \color{#FF6800}{ 12 } \color{#FF6800}{ - } \color{#FF6800}{ 30 }$
$ $ Subtract $ 30 $ from $ 12$
$- 2 x > \color{#FF6800}{ - } \color{#FF6800}{ 18 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } > \color{#FF6800}{ - } \color{#FF6800}{ 18 }$
$ $ Change the symbol of the inequality of both sides, and reverse the symbol of the inequality to the opposite direction $ $
$2 x < 18$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } < \color{#FF6800}{ 18 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } < \color{#FF6800}{ 9 }$
Solution search results
Have you found the solution you wanted?
Try again
Try more features at Qanda!
check-iconSearch by problem image
check-iconAsk 1:1 question to TOP class teachers
check-iconAI recommend problems and video lecture