Symbol

# Calculator search results

Formula
Solve the inequality
Graph
$4 - x \leq 5 \left ( x + 2 \right )$
$4 - x \leq 5 \left ( x + 2 \right )$
Solution of inequality
$x \geq - 1$
$4-x \leq 5 \left( x+2 \right)$
$x \geq - 1$
 Solve a solution to $x$
$4 - x \leq \color{#FF6800}{ 5 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
 Multiply each term in parentheses by $5$
$4 - x \leq \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 }$
$4 - x \leq 5 x + \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 }$
 Multiply $5$ and $2$
$4 - x \leq 5 x + \color{#FF6800}{ 10 }$
$\color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ x } \leq 5 x + 10$
 Organize the expression 
$\color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \leq 5 x + 10$
$- x + 4 \leq \color{#FF6800}{ 5 } \color{#FF6800}{ x } + 10$
 Move the variable to the left-hand side and change the symbol 
$- x + 4 \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \leq 10$
$- x \color{#FF6800}{ + } \color{#FF6800}{ 4 } - 5 x \leq 10$
 Move the constant to the right side and change the sign 
$- x - 5 x \leq 10 \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
$\color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \leq 10 - 4$
 Organize the expression 
$\color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \leq 10 - 4$
$- 6 x \leq \color{#FF6800}{ 10 } \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
 Subtract $4$ from $10$
$- 6 x \leq \color{#FF6800}{ 6 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \leq \color{#FF6800}{ 6 }$
 Change the symbol of the inequality of both sides, and reverse the symbol of the inequality to the opposite direction 
$6 x \geq - 6$
$\color{#FF6800}{ 6 } \color{#FF6800}{ x } \geq \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } \geq \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture