Symbol

# Calculator search results

Formula
Expand the expression
Factorize the expression
$4 \left( x-3y \right) -2 \left( 3x+y \right)$
$- 2 x - 14 y$
Organize polynomials
$\color{#FF6800}{ 4 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ y } \right ) - 2 \left ( 3 x + y \right )$
 Organize the expression with the distributive law 
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ y } - 2 \left ( 3 x + y \right )$
$4 x - 12 y \color{#FF6800}{ - } \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right )$
 Organize the expression with the distributive law 
$4 x - 12 y \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y }$
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y }$
 Organize the similar terms 
$\left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ y }$
$\left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \right ) \color{#FF6800}{ x } + \left ( - 12 - 2 \right ) y$
 Arrange the constant term 
$\color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } + \left ( - 12 - 2 \right ) y$
$- 2 x + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ y }$
 Arrange the constant term 
$- 2 x \color{#FF6800}{ - } \color{#FF6800}{ 14 } \color{#FF6800}{ y }$
$- 2 \left ( x + 7 y \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ 4 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ y } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ y } \right )$
 Expand the expression 
$\color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 14 } \color{#FF6800}{ y }$
$\color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 14 } \color{#FF6800}{ y }$
 Tie a common factor 
$\color{#FF6800}{ - } \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 7 } \color{#FF6800}{ y } \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture