# Calculator search results

Formula
Solve the equation
Graph
$y = 4 \left ( 0.2 x + 1 \right )$
$y = 0.3 \left ( 4 - 2 x \right )$
$x$-intercept
$\left ( - 5 , 0 \right )$
$y$-intercept
$\left ( 0 , 4 \right )$
$x$-intercept
$\left ( 2 , 0 \right )$
$y$-intercept
$\left ( 0 , \dfrac { 6 } { 5 } \right )$
$4 \left( 0.2x+1 \right) = 0.3 \left( 4-2x \right)$
$x = - 2$
 Solve a solution to $x$
$\color{#FF6800}{ 4 } \left ( \color{#FF6800}{ 0.2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) = \color{#FF6800}{ 0.3 } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \right )$
 Organize the expression 
$\color{#FF6800}{ 0.8 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } = \color{#FF6800}{ 0.3 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 0.3 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x }$
$\color{#FF6800}{ 0.8 } \color{#FF6800}{ x } + 4 = 0.3 \times 4 + 0.3 \times \left ( - 2 \right ) x$
 Calculate the multiplication expression 
$\color{#FF6800}{ \dfrac { 4 x } { 5 } } + 4 = 0.3 \times 4 + 0.3 \times \left ( - 2 \right ) x$
$\dfrac { 4 x } { 5 } + 4 = \color{#FF6800}{ 0.3 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } + 0.3 \times \left ( - 2 \right ) x$
 Multiply $0.3$ and $4$
$\dfrac { 4 x } { 5 } + 4 = \color{#FF6800}{ 1.2 } + 0.3 \times \left ( - 2 \right ) x$
$\dfrac { 4 x } { 5 } + 4 = \color{#FF6800}{ 1.2 } + 0.3 \times \left ( - 2 \right ) x$
 Convert decimals to fractions 
$\dfrac { 4 x } { 5 } + 4 = \color{#FF6800}{ \dfrac { 6 } { 5 } } + 0.3 \times \left ( - 2 \right ) x$
$\dfrac { 4 x } { 5 } + 4 = \dfrac { 6 } { 5 } + \color{#FF6800}{ 0.3 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x }$
 Simplify the expression 
$\dfrac { 4 x } { 5 } + 4 = \dfrac { 6 } { 5 } \color{#FF6800}{ - } \color{#FF6800}{ 0.6 } \color{#FF6800}{ x }$
$\dfrac { 4 x } { 5 } + 4 = \dfrac { 6 } { 5 } \color{#FF6800}{ - } \color{#FF6800}{ 0.6 } \color{#FF6800}{ x }$
 Calculate the multiplication expression 
$\dfrac { 4 x } { 5 } + 4 = \dfrac { 6 } { 5 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 3 x } { 5 } }$
$\color{#FF6800}{ \dfrac { 4 x } { 5 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } = \color{#FF6800}{ \dfrac { 6 } { 5 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 3 x } { 5 } }$
 Multiply both sides by the least common multiple for the denominators to eliminate the fraction 
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 20 } = \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 }$
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 20 } = \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 }$
 Organize the expression 
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ x } = \color{#FF6800}{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 20 }$
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ x } = 6 - 20$
 Organize the expression 
$\color{#FF6800}{ 7 } \color{#FF6800}{ x } = 6 - 20$
$7 x = \color{#FF6800}{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 20 }$
 Subtract $20$ from $6$
$7 x = \color{#FF6800}{ - } \color{#FF6800}{ 14 }$
$\color{#FF6800}{ 7 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 14 }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
 그래프 보기 
Graph
Solution search results
Algebra
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture