$\color{#FF6800}{ 4 } \left ( \color{#FF6800}{ 0.2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) = \color{#FF6800}{ 0.3 } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \right )$
$ $ Organize the expression $ $
$\color{#FF6800}{ 0.8 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } = \color{#FF6800}{ 0.3 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 0.3 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x }$
$\color{#FF6800}{ 0.8 } \color{#FF6800}{ x } + 4 = 0.3 \times 4 + 0.3 \times \left ( - 2 \right ) x$
$ $ Calculate the multiplication expression $ $
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 4 } \color{#FF6800}{ x } } { \color{#FF6800}{ 5 } } } + 4 = 0.3 \times 4 + 0.3 \times \left ( - 2 \right ) x$
$\dfrac { 4 x } { 5 } + 4 = \color{#FF6800}{ 0.3 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } + 0.3 \times \left ( - 2 \right ) x$
$ $ Multiply $ 0.3 $ and $ 4$
$\dfrac { 4 x } { 5 } + 4 = \color{#FF6800}{ 1.2 } + 0.3 \times \left ( - 2 \right ) x$
$\dfrac { 4 x } { 5 } + 4 = \color{#FF6800}{ 1.2 } + 0.3 \times \left ( - 2 \right ) x$
$ $ Convert decimals to fractions $ $
$\dfrac { 4 x } { 5 } + 4 = \color{#FF6800}{ \dfrac { \color{#FF6800}{ 6 } } { \color{#FF6800}{ 5 } } } + 0.3 \times \left ( - 2 \right ) x$
$\dfrac { 4 x } { 5 } + 4 = \dfrac { 6 } { 5 } + \color{#FF6800}{ 0.3 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x }$
$ $ Simplify the expression $ $
$\dfrac { 4 x } { 5 } + 4 = \dfrac { 6 } { 5 } \color{#FF6800}{ - } \color{#FF6800}{ 0.6 } \color{#FF6800}{ x }$
$\dfrac { 4 x } { 5 } + 4 = \dfrac { 6 } { 5 } \color{#FF6800}{ - } \color{#FF6800}{ 0.6 } \color{#FF6800}{ x }$
$ $ Calculate the multiplication expression $ $
$\dfrac { 4 x } { 5 } + 4 = \dfrac { 6 } { 5 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 3 } \color{#FF6800}{ x } } { \color{#FF6800}{ 5 } } }$
$\color{#FF6800}{ \dfrac { \color{#FF6800}{ 4 } \color{#FF6800}{ x } } { \color{#FF6800}{ 5 } } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } = \color{#FF6800}{ \dfrac { \color{#FF6800}{ 6 } } { \color{#FF6800}{ 5 } } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { \color{#FF6800}{ 3 } \color{#FF6800}{ x } } { \color{#FF6800}{ 5 } } }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 20 } = \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 }$
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 20 } = \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 }$
$ $ Organize the expression $ $
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ x } = \color{#FF6800}{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 20 }$
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ x } = 6 - 20$
$ $ Organize the expression $ $
$\color{#FF6800}{ 7 } \color{#FF6800}{ x } = 6 - 20$
$7 x = \color{#FF6800}{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 20 }$
$ $ Subtract $ 20 $ from $ 6$
$7 x = \color{#FF6800}{ - } \color{#FF6800}{ 14 }$
$\color{#FF6800}{ 7 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 14 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 2 }$