qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Judge the identity
Answer
circle-check-icon
expand-arrow-icon
Solve the equation
Answer
circle-check-icon
expand-arrow-icon
Graph
$y = 3 x - x$
$y = 2 x$
$x$Intercept
$\left ( 0 , 0 \right )$
$y$Intercept
$\left ( 0 , 0 \right )$
$x$Intercept
$\left ( 0 , 0 \right )$
$y$Intercept
$\left ( 0 , 0 \right )$
$3x-x = 2x$
$ $ TRUE $ $
Judge the identity
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ x } = 2 x$
$ $ Calculate between similar terms $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } = 2 x$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } = \color{#FF6800}{ 2 } \color{#FF6800}{ x }$
$ $ Since the values to calculate for all terms are equal, this expression is an identity $ $
$ $ TRUE $ $
$ $ There are countless solutions $ $
Solve the equation
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ x } = 2 x$
$ $ Calculate between similar terms $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } = 2 x$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } = \color{#FF6800}{ 2 } \color{#FF6800}{ x }$
$ $ Since both sides are the same, this equation is true regardless of the variable $ $
$ $ There are countless solutions $ $
$ $ 그래프 보기 $ $
Graph
Solution search results
search-thumbnail-Prove that tan $01$ $x+tan^{-1}\dfrac {x} {\dfrac {2} {1-}x^{2}}=tan^{-1\left(\dfrac {3x-x^{3}} {1-3x^{2}}\right)}$ $1x1<\dfrac {1} {\sqrt{3} }$ 
$1$
10th-13th grade
Other
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo