Calculator search results

Formula
Solve the equation
Graph
$y = 3 x + \dfrac { 1 } { 3 } \left ( 100 - x \right )$
$y = 100$
$x$-intercept
$\left ( - \dfrac { 25 } { 2 } , 0 \right )$
$y$-intercept
$\left ( 0 , \dfrac { 100 } { 3 } \right )$
$3x+ \dfrac{ 1 }{ 3 } \left( 100-x \right) = 100$
$x = 25$
 Solve a solution to $x$
$3 x + \color{#FF6800}{ \dfrac { 1 } { 3 } } \left ( \color{#FF6800}{ 100 } \color{#FF6800}{ - } \color{#FF6800}{ x } \right ) = 100$
 Multiply each term in parentheses by $\dfrac { 1 } { 3 }$
$3 x + \color{#FF6800}{ \dfrac { 1 } { 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 100 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 3 } } \color{#FF6800}{ x } = 100$
$3 x + \color{#FF6800}{ \dfrac { 1 } { 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 100 } - \dfrac { 1 } { 3 } x = 100$
 Calculate the product of rational numbers 
$3 x + \color{#FF6800}{ \dfrac { 100 } { 3 } } - \dfrac { 1 } { 3 } x = 100$
$3 x + \dfrac { 100 } { 3 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 1 } { 3 } } \color{#FF6800}{ x } = 100$
 Calculate the multiplication expression 
$3 x + \dfrac { 100 } { 3 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { x } { 3 } } = 100$
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } - \dfrac { x } { 3 } + \dfrac { 100 } { 3 } = 100$
 Convert an equation to a fraction using $a=\dfrac{a}{1}$
$\color{#FF6800}{ \dfrac { 3 x } { 1 } } - \dfrac { x } { 3 } + \dfrac { 100 } { 3 } = 100$
$\color{#FF6800}{ \dfrac { 3 x } { 1 } } - \dfrac { x } { 3 } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 100 } { 3 } } = 100$
 Write all numerators above the least common denominator 
$\color{#FF6800}{ \dfrac { 9 x + 100 } { 3 } } - \dfrac { x } { 3 } = 100$
$\color{#FF6800}{ \dfrac { 9 x + 100 } { 3 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { x } { 3 } } = \color{#FF6800}{ 100 }$
 Multiply both sides by the least common multiple for the denominators to eliminate the fraction 
$\color{#FF6800}{ 9 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 100 } \color{#FF6800}{ - } \color{#FF6800}{ x } = \color{#FF6800}{ 300 }$
$\color{#FF6800}{ 9 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 100 } \color{#FF6800}{ - } \color{#FF6800}{ x } = \color{#FF6800}{ 300 }$
 Organize the expression 
$\color{#FF6800}{ 8 } \color{#FF6800}{ x } = \color{#FF6800}{ 200 }$
$\color{#FF6800}{ 8 } \color{#FF6800}{ x } = \color{#FF6800}{ 200 }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } = \color{#FF6800}{ 25 }$
 그래프 보기 
Graph
Solution search results