Symbol

Calculator search results

Formula
Expand the expression
Factorize the expression
$3a-2 \{ a- \left( a ^{ 2 } -3 \right) +2a ^{ 2 } \}$
$- 2 a ^ { 2 } + a - 6$
Organize polynomials
$3 a - 2 \left ( a \color{#FF6800}{ - } \left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) + 2 a ^ { 2 } \right )$
 Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses 
$3 a - 2 \left ( a \color{#FF6800}{ - } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 3 } + 2 a ^ { 2 } \right )$
$3 a - 2 \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \right )$
 Organize the similar terms 
$3 a - 2 \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right )$
$3 a - 2 \left ( a + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } + 3 \right )$
 Organize the mononomial expression 
$3 a - 2 \left ( a + \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } + 3 \right )$
$3 a - 2 \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right )$
 Sort the polynomial expressions in descending order 
$3 a - 2 \left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right )$
$3 a \color{#FF6800}{ - } \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \right )$
 Organize the expression with the distributive law 
$3 a \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
$\color{#FF6800}{ 3 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
 Organize the similar terms 
$\left ( \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
$\left ( \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ a } - 2 a ^ { 2 } - 6$
 Organize the mononomial expression 
$\color{#FF6800}{ a } - 2 a ^ { 2 } - 6$
$\color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
 Sort the polynomial expressions in descending order 
$\color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
$- \left ( 2 a ^ { 2 } - a + 6 \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ 3 } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ a } \color{#FF6800}{ - } \left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \right )$
 Expand the expression 
$\color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 6 }$
 Bind the expressions with the common factor $- 1$
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture