# Calculator search results

Formula
Factorize the expression
$36x ^{ 2 } -a ^{ 6 } b ^{ 4 }$
$- \left ( a ^ { 3 } b ^ { 2 } - 6 x \right ) \left ( a ^ { 3 } b ^ { 2 } + 6 x \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ 36 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 6 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 4 } }$
 Factorize to use the polynomial formula of sum and difference 
$\left ( \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right ) \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right )$
$\left ( \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right ) \left ( 6 x - a ^ { 3 } b ^ { 2 } \right )$
 Organize the expression 
$\left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \right ) \left ( 6 x - a ^ { 3 } b ^ { 2 } \right )$
$\left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \right ) \left ( 6 x - a ^ { 3 } b ^ { 2 } \right )$
 Expand the expression 
$\left ( \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right ) \left ( 6 x - a ^ { 3 } b ^ { 2 } \right )$
$\left ( 6 x + a ^ { 3 } b ^ { 2 } \right ) \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right )$
 Organize the expression 
$\left ( 6 x + a ^ { 3 } b ^ { 2 } \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \right )$
$\left ( 6 x + a ^ { 3 } b ^ { 2 } \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \right )$
 Expand the expression 
$\left ( 6 x + a ^ { 3 } b ^ { 2 } \right ) \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right )$
$\left ( 6 x + a ^ { 3 } b ^ { 2 } \right ) \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right )$
 Do factorization 
$\left ( 6 x + a ^ { 3 } b ^ { 2 } \right ) \times \left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \right ) \right )$
$\left ( \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right ) \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \right ) \right )$
 Sort the factors 
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \right ) \left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \right )$
Solution search results