qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Factorize the expression
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
$36x ^{ 2 } -a ^{ 6 } b ^{ 4 }$
$- \left ( a ^ { 3 } b ^ { 2 } - 6 x \right ) \left ( a ^ { 3 } b ^ { 2 } + 6 x \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ 36 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 6 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 4 } }$
$ $ Factorize to use the polynomial formula of sum and difference $ $
$\left ( \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right ) \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right )$
$\left ( \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right ) \left ( 6 x - a ^ { 3 } b ^ { 2 } \right )$
$ $ Organize the expression $ $
$\left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \right ) \left ( 6 x - a ^ { 3 } b ^ { 2 } \right )$
$\left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \right ) \left ( 6 x - a ^ { 3 } b ^ { 2 } \right )$
$ $ Expand the expression $ $
$\left ( \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right ) \left ( 6 x - a ^ { 3 } b ^ { 2 } \right )$
$\left ( 6 x + a ^ { 3 } b ^ { 2 } \right ) \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right )$
$ $ Organize the expression $ $
$\left ( 6 x + a ^ { 3 } b ^ { 2 } \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \right )$
$\left ( 6 x + a ^ { 3 } b ^ { 2 } \right ) \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \right )$
$ $ Expand the expression $ $
$\left ( 6 x + a ^ { 3 } b ^ { 2 } \right ) \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right )$
$\left ( 6 x + a ^ { 3 } b ^ { 2 } \right ) \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right )$
$ $ Do factorization $ $
$\left ( 6 x + a ^ { 3 } b ^ { 2 } \right ) \times \left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \right ) \right )$
$\left ( \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \right ) \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \right ) \right )$
$ $ Sort the factors $ $
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \right ) \left ( \color{#FF6800}{ a } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ b } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \right )$
Solution search results
search-thumbnail-$a^{6}b^{2}-a^{2}b^{6}$
10th-13th grade
Algebra
search-thumbnail-$a^{6}b^{2}-a^{2}b^{6}$
10th-13th grade
Algebra
search-thumbnail-Factor II. Keep Trying! 
the following polynomial by taking out common monomial factor. 
1. $4x+6$ 6. a2b $+a^{6}b^{2}-$ $a^{4}b^{4}$ 
$2.$ $2x^{2-}$ 5x $7.$ $5x\left(3x-4\right)$ $-4\left(3x-4\right)$ 
3. $18x^{2}$ $-$ - 6x 8. 
4. $14x^{5}+21x^{3}$ $9.$ $+21xy^{3}+15xy^{4}$ $2b\left(2a+5\right)+3\left(2a+5\right)$ $1$ 
$5.$ $8x^{8}$ $-16x^{6}+40x^{4}$ 10. $-m^{2}n0^{4}$ $4$ $3$ $--mn^{2}0^{3}$ $+\dfrac {3} {4}mn$
7th-9th grade
Probability and Statistics
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo