Calculator search results

Formula
Do prime factorization
Answer
circle-check-icon
Find the number of divisors
Answer
circle-check-icon
expand-arrow-icon
Find the square root
Answer
circle-check-icon
expand-arrow-icon
List all divisors
Answer
circle-check-icon
Rewrite a number
Answer
circle-check-icon
$36$
$2 ^ { 2 } \times 3 ^ { 2 }$
Do prime factorization
$\color{#FF6800}{ 36 }$
$ $ Represents an integer as a product of decimal numbers $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } }$
$9$
Find the number of divisors
$\color{#FF6800}{ 36 }$
$ $ Represents an integer as a product of decimal numbers $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } }$
$ $ Find the number of divisors using an exponent $ $
$\color{#FF6800}{ 9 }$
$\pm 6$
Find the square root
$\color{#FF6800}{ 36 }$
$ $ For even square roots, $ \pm $ is attached in front of the square root $ $
$\pm \sqrt{ \color{#FF6800}{ 36 } }$
$\pm \sqrt{ \color{#FF6800}{ 36 } }$
$ $ Organize the part that can be taken out of the radical sign inside the square root symbol $ $
$\pm \color{#FF6800}{ 6 }$
$1 , 2 , 3 , 4 , 6 , 9 , 12 , 18 , 36$
Find all divisors
$\color{#FF6800}{ 36 }$
$ $ Represents an integer as a product of decimal numbers $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } }$
$ $ List divisors of factors $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \\ \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \\ \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } }$
$ $ Find all divisors by combining factors which is possible for the reduction of fraction $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } }$
$ $ Calculate the product of all divisors $ $
$\color{#FF6800}{ 1 } , \color{#FF6800}{ 2 } , \color{#FF6800}{ 3 } , \color{#FF6800}{ 4 } , \color{#FF6800}{ 6 } , \color{#FF6800}{ 9 } , \color{#FF6800}{ 12 } , \color{#FF6800}{ 18 } , \color{#FF6800}{ 36 }$
$6 ^ { 2 }$
Rewrite in exponential format
$\color{#FF6800}{ 36 }$
$ $ Write a number in exponential form with the base number, $ 6$
$\color{#FF6800}{ 6 } ^ { \color{#FF6800}{ 2 } }$
$3.6 \times 10 ^ { 1 }$
Rewrite in the scientific numeral system
$\color{#FF6800}{ 36 }$
$ $ Rewrite in the scientific numeral system $ $
$\color{#FF6800}{ 3.6 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } }$
Solution search results
search-thumbnail-Probability $0$ the Values of Random Variable $x$ 
$4$ $3$ $2$ $1$ $4$ $-$ $35$ $\bar{56} $ $36$ $3$ $30$ $36$ $6$ $36$ $6$ $\bar{3b} $ 
Scomm Younotice $x$
10th-13th grade
Probability and Statistics
search-thumbnail-2. 3. 4 54 6 00 6. $10$ 11 12 
$P\left(Z\right)$ 
$\dfrac {1} {36}$ 2 3 5. 6 4 3. 2. 1 
- 
$36$ $36$ $36$ $36$ $\bar{36} $ $36$ $36$ $36$ 36 
$36$ 
Example: $P\left(Z>10\right)=P\left(11\right)+P\left(12\right)$ 
1. $P\left(Z<5\right)=$ 4. $P\left(Z\leq 7\right)=$ 
2. $P\left(3<Z<8\right)=$ 5. $P\left(2<2\leq 11\right)=$ 
3. $P\left(Z\geq 9\right)=$
10th-13th grade
Probability and Statistics
search-thumbnail-ons. $z$ $2$ $3$ $-$ Xg vilidedo1 $41$ Réfer to the given example for 
$\dfrac {5} {4}$ 6. 7 0 8 $10$ $12$ 
P(Z) $\dfrac {1} {36}$ $\bar{\dfrac {2} {36}} $ $-$ $\dfrac {3} {36}$ $\dfrac {4} {36}$ $-$ $\dfrac {5} {36}$ $\dfrac {6} {36}$ $\dfrac {5} {36}$ $\dfrac {9} {\dfrac {4} {36}}$ $\dfrac {3} {36}$ $\dfrac {11} {\dfrac {2} {36}}$ $\dfrac {1} {36}$ 
5.
10th-13th grade
Other
search-thumbnail-
$2$ $x$ $\dfrac {1} {310}$ $P\left(x\right)\left(1$ $1$ $2$ $3$ $4$ $5$ $8$ t0 12 
$\dfrac {7} {30}$ $\dfrac {3} {3b}$ $|\dfrac {4} {30}$ $\dfrac {5} {3b}$ 15 $\dfrac {b} {36}$ $\dfrac {5} {3b}$ $\dfrac {4} {3\left(0}$ $\dfrac {3} {3b}$ $\dfrac {2} {3b}$ $\dfrac {1} {3b}$ 
What is the shape of the graph of the $distrubti0m$ ?
10th-13th grade
Probability and Statistics
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo