qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Multiply the numbers
Answer
circle-check-icon
Find the number of divisors
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
List all divisors
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Do prime factorization
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
Organize using the law of exponent
Answer
circle-check-icon
expand-arrow-icon
$33 \times 33 \times 33$
$35937$
Multiply the numbers
$\color{#FF6800}{ 33 } \color{#FF6800}{ \times } \color{#FF6800}{ 33 } \times 33$
$ $ Multiply $ 33 $ and $ 33$
$\color{#FF6800}{ 1089 } \times 33$
$\color{#FF6800}{ 1089 } \color{#FF6800}{ \times } \color{#FF6800}{ 33 }$
$ $ Multiply $ 1089 $ and $ 33$
$\color{#FF6800}{ 35937 }$
$16$
Find the number of divisors
$\color{#FF6800}{ 33 } \color{#FF6800}{ \times } \color{#FF6800}{ 33 } \color{#FF6800}{ \times } \color{#FF6800}{ 33 }$
$ $ Do prime factorization $ $
$\color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 11 }$
$\color{#FF6800}{ 3 } \times 3 \times 3 \times 11 \times 11 \times 11$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 3 \times 3 \times 11 \times 11 \times 11$
$3 ^ { 1 } \times \color{#FF6800}{ 3 } \times 3 \times 11 \times 11 \times 11$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 ^ { 1 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 3 \times 11 \times 11 \times 11$
$3 ^ { 1 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } \times 11 \times 11 \times 11$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 ^ { 1 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 11 \times 11 \times 11$
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 11 \times 11 \times 11$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 11 \times 11 \times 11$
$3 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 11 \times 11 \times 11$
$ $ Find the sum $ $
$3 ^ { \color{#FF6800}{ 3 } } \times 11 \times 11 \times 11$
$3 ^ { 3 } \times \color{#FF6800}{ 11 } \times 11 \times 11$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 ^ { 3 } \times \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 1 } } \times 11 \times 11$
$3 ^ { 3 } \times 11 ^ { 1 } \times \color{#FF6800}{ 11 } \times 11$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 ^ { 3 } \times 11 ^ { 1 } \times \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 1 } } \times 11$
$3 ^ { 3 } \times 11 ^ { 1 } \times 11 ^ { 1 } \times \color{#FF6800}{ 11 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 ^ { 3 } \times 11 ^ { 1 } \times 11 ^ { 1 } \times \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 1 } }$
$3 ^ { 3 } \times \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 1 } }$
$ $ Add the exponent as the base is the same $ $
$3 ^ { 3 } \times \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$3 ^ { 3 } \times 11 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$ $ Find the sum $ $
$3 ^ { 3 } \times 11 ^ { \color{#FF6800}{ 3 } }$
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 3 } }$
$ $ Find the number of divisors using an exponent $ $
$\color{#FF6800}{ 16 }$
$1 , 3 , 9 , 11 , 27 , 33 , 99 , 121 , 297 , 363 , 1089 , 1331 , 3267 , 3993 , 11979 , 35937$
Find all divisors
$\color{#FF6800}{ 33 } \color{#FF6800}{ \times } \color{#FF6800}{ 33 } \color{#FF6800}{ \times } \color{#FF6800}{ 33 }$
$ $ Do prime factorization $ $
$\color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 11 }$
$\color{#FF6800}{ 3 } \times 3 \times 3 \times 11 \times 11 \times 11$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 3 \times 3 \times 11 \times 11 \times 11$
$3 ^ { 1 } \times \color{#FF6800}{ 3 } \times 3 \times 11 \times 11 \times 11$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 ^ { 1 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 3 \times 11 \times 11 \times 11$
$3 ^ { 1 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } \times 11 \times 11 \times 11$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 ^ { 1 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 11 \times 11 \times 11$
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 11 \times 11 \times 11$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 11 \times 11 \times 11$
$3 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 11 \times 11 \times 11$
$ $ Find the sum $ $
$3 ^ { \color{#FF6800}{ 3 } } \times 11 \times 11 \times 11$
$3 ^ { 3 } \times \color{#FF6800}{ 11 } \times 11 \times 11$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 ^ { 3 } \times \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 1 } } \times 11 \times 11$
$3 ^ { 3 } \times 11 ^ { 1 } \times \color{#FF6800}{ 11 } \times 11$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 ^ { 3 } \times 11 ^ { 1 } \times \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 1 } } \times 11$
$3 ^ { 3 } \times 11 ^ { 1 } \times 11 ^ { 1 } \times \color{#FF6800}{ 11 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 ^ { 3 } \times 11 ^ { 1 } \times 11 ^ { 1 } \times \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 1 } }$
$3 ^ { 3 } \times \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 1 } }$
$ $ Add the exponent as the base is the same $ $
$3 ^ { 3 } \times \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$3 ^ { 3 } \times 11 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$ $ Find the sum $ $
$3 ^ { 3 } \times 11 ^ { \color{#FF6800}{ 3 } }$
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 3 } }$
$ $ List divisors of factors $ $
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } \\ \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 3 } }$
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } \\ \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 3 } }$
$ $ Find all divisors by combining factors which is possible for the reduction of fraction $ $
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 3 } }$
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 3 } }$
$ $ Calculate the product of all divisors $ $
$\color{#FF6800}{ 1 } , \color{#FF6800}{ 3 } , \color{#FF6800}{ 9 } , \color{#FF6800}{ 11 } , \color{#FF6800}{ 27 } , \color{#FF6800}{ 33 } , \color{#FF6800}{ 99 } , \color{#FF6800}{ 121 } , \color{#FF6800}{ 297 } , \color{#FF6800}{ 363 } , \color{#FF6800}{ 1089 } , \color{#FF6800}{ 1331 } , \color{#FF6800}{ 3267 } , \color{#FF6800}{ 3993 } , \color{#FF6800}{ 11979 } , \color{#FF6800}{ 35937 }$
$3 ^ { 3 } \times 11 ^ { 3 }$
Organize using the law of exponent
$\color{#FF6800}{ 33 } \times 33 \times 33$
$ $ Represents an integer as a product of decimal numbers $ $
$\color{#FF6800}{ 3 } \times \color{#FF6800}{ 11 } \times 33 \times 33$
$3 \times 11 \times \color{#FF6800}{ 33 } \times 33$
$ $ Represents an integer as a product of decimal numbers $ $
$3 \times 11 \times \color{#FF6800}{ 3 } \times \color{#FF6800}{ 11 } \times 33$
$3 \times 11 \times 3 \times 11 \times \color{#FF6800}{ 33 }$
$ $ Represents an integer as a product of decimal numbers $ $
$3 \times 11 \times 3 \times 11 \times \color{#FF6800}{ 3 } \times \color{#FF6800}{ 11 }$
$\color{#FF6800}{ 3 } \times 3 \times 3 \times 11 \times 11 \times 11$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 3 \times 3 \times 11 \times 11 \times 11$
$3 ^ { 1 } \times \color{#FF6800}{ 3 } \times 3 \times 11 \times 11 \times 11$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 ^ { 1 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 3 \times 11 \times 11 \times 11$
$3 ^ { 1 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } \times 11 \times 11 \times 11$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 ^ { 1 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 11 \times 11 \times 11$
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 11 \times 11 \times 11$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 11 \times 11 \times 11$
$3 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \times 11 \times 11 \times 11$
$ $ Find the sum $ $
$3 ^ { \color{#FF6800}{ 3 } } \times 11 \times 11 \times 11$
$3 ^ { 3 } \times \color{#FF6800}{ 11 } \times 11 \times 11$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 ^ { 3 } \times \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 1 } } \times 11 \times 11$
$3 ^ { 3 } \times 11 ^ { 1 } \times \color{#FF6800}{ 11 } \times 11$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 ^ { 3 } \times 11 ^ { 1 } \times \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 1 } } \times 11$
$3 ^ { 3 } \times 11 ^ { 1 } \times 11 ^ { 1 } \times \color{#FF6800}{ 11 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 ^ { 3 } \times 11 ^ { 1 } \times 11 ^ { 1 } \times \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 1 } }$
$3 ^ { 3 } \times \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 1 } }$
$ $ Add the exponent as the base is the same $ $
$3 ^ { 3 } \times \color{#FF6800}{ 11 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$3 ^ { 3 } \times 11 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$ $ Find the sum $ $
$3 ^ { 3 } \times 11 ^ { \color{#FF6800}{ 3 } }$
$33 ^ { 3 }$
Organize using the law of exponent
$\color{#FF6800}{ 33 } \times 33 \times 33$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$\color{#FF6800}{ 33 } ^ { \color{#FF6800}{ 1 } } \times 33 \times 33$
$33 ^ { 1 } \times \color{#FF6800}{ 33 } \times 33$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$33 ^ { 1 } \times \color{#FF6800}{ 33 } ^ { \color{#FF6800}{ 1 } } \times 33$
$33 ^ { 1 } \times 33 ^ { 1 } \times \color{#FF6800}{ 33 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$33 ^ { 1 } \times 33 ^ { 1 } \times \color{#FF6800}{ 33 } ^ { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ 33 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 33 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 33 } ^ { \color{#FF6800}{ 1 } }$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 33 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$33 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$ $ Find the sum $ $
$33 ^ { \color{#FF6800}{ 3 } }$
Solution search results
search-thumbnail-$7.c$ Choose the amount of money that is equal to $3$ quarters 
O $5$ 5 dimes $3$ 3 nickels 
$6$ 6 dimes $3$ nickels 
$6$ 6 dimes $2$ nickels 
O $7$ 7 dimes $2$ nickels
1st-6th grade
Other
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo