  Calculator search results

Formula
Solve the equation   Graph
$y = 3 ^ { x }$
$y = 6$
$y$Intercept
$\left ( 0 , 1 \right )$
Asymptote
$y = 0$
$3 ^{ x } = 6$
$x = 1 + \log _{ 3 } { \left( 2 \right) }$
Solve the equation
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ x } } = \color{#FF6800}{ 6 }$
 Solve an exponential equation (inequality) by taking the logarithm on both sides 
$\color{#FF6800}{ x } = \log _{ \color{#FF6800}{ 3 } } { \left( \color{#FF6800}{ 6 } \right) }$
$x = \log _{ 3 } { \left( \color{#FF6800}{ 6 } \right) }$
 Factor the antilogarithm with the expression in which $3$ , that is the base, is included 
$x = \log _{ 3 } { \left( \color{#FF6800}{ 3 } \right) } + \log _{ 3 } { \left( \color{#FF6800}{ 2 } \right) }$
$x = \log _{ \color{#FF6800}{ 3 } } { \left( \color{#FF6800}{ 3 } \right) } + \log _{ 3 } { \left( 2 \right) }$
 The logarithm is equal to 1 if a base is same as an antilogarithm 
$x = \color{#FF6800}{ 1 } + \log _{ 3 } { \left( 2 \right) }$
 그래프 보기 
Graph
Have you found the solution you wanted?
Try again