qanda-logo
search-icon
Symbol

Calculator search results

Multiply the numbers
Answer
circle-check-icon
Find the number of divisors
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
List all divisors
Answer
circle-check-icon
expand-arrow-icon
Do prime factorization
Answer
circle-check-icon
expand-arrow-icon
Organize using the law of exponent
Answer
circle-check-icon
expand-arrow-icon
$243$
Multiply the numbers
$\color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \times 3 \times 3 \times 3$
$ $ Multiply $ 3 $ and $ 3$
$\color{#FF6800}{ 9 } \times 3 \times 3 \times 3$
$\color{#FF6800}{ 9 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \times 3 \times 3$
$ $ Multiply $ 9 $ and $ 3$
$\color{#FF6800}{ 27 } \times 3 \times 3$
$\color{#FF6800}{ 27 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \times 3$
$ $ Multiply $ 27 $ and $ 3$
$\color{#FF6800}{ 81 } \times 3$
$\color{#FF6800}{ 81 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
$ $ Multiply $ 81 $ and $ 3$
$\color{#FF6800}{ 243 }$
$6$
Find the number of divisors
$\color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
$ $ Do prime factorization $ $
$\color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
$\color{#FF6800}{ 3 } \times 3 \times 3 \times 3 \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 3 \times 3 \times 3 \times 3$
$3 ^ { 1 } \times \color{#FF6800}{ 3 } \times 3 \times 3 \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 ^ { 1 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 3 \times 3 \times 3$
$3 ^ { 1 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } \times 3 \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 ^ { 1 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 3 \times 3$
$3 ^ { 1 } \times 3 ^ { 1 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 ^ { 1 } \times 3 ^ { 1 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 3$
$3 ^ { 1 } \times 3 ^ { 1 } \times 3 ^ { 1 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 ^ { 1 } \times 3 ^ { 1 } \times 3 ^ { 1 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } }$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$3 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$ $ Find the sum $ $
$3 ^ { \color{#FF6800}{ 5 } }$
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 5 } }$
$ $ Find the number of divisors using an exponent $ $
$\color{#FF6800}{ 6 }$
$1 , 3 , 9 , 27 , 81 , 243$
Find all divisors
$\color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
$ $ Do prime factorization $ $
$\color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
$\color{#FF6800}{ 3 } \times 3 \times 3 \times 3 \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 3 \times 3 \times 3 \times 3$
$3 ^ { 1 } \times \color{#FF6800}{ 3 } \times 3 \times 3 \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 ^ { 1 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 3 \times 3 \times 3$
$3 ^ { 1 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } \times 3 \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 ^ { 1 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 3 \times 3$
$3 ^ { 1 } \times 3 ^ { 1 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 ^ { 1 } \times 3 ^ { 1 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 3$
$3 ^ { 1 } \times 3 ^ { 1 } \times 3 ^ { 1 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 ^ { 1 } \times 3 ^ { 1 } \times 3 ^ { 1 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } }$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$3 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$ $ Find the sum $ $
$3 ^ { \color{#FF6800}{ 5 } }$
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 5 } }$
$ $ List divisors of factors $ $
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 4 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 5 } }$
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 4 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 5 } }$
$ $ Calculate the product of all divisors $ $
$\color{#FF6800}{ 1 } , \color{#FF6800}{ 3 } , \color{#FF6800}{ 9 } , \color{#FF6800}{ 27 } , \color{#FF6800}{ 81 } , \color{#FF6800}{ 243 }$
$3 ^ { 5 }$
Organize using the law of exponent
$\color{#FF6800}{ 3 } \times 3 \times 3 \times 3 \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 3 \times 3 \times 3 \times 3$
$3 ^ { 1 } \times \color{#FF6800}{ 3 } \times 3 \times 3 \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 ^ { 1 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 3 \times 3 \times 3$
$3 ^ { 1 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } \times 3 \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 ^ { 1 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 3 \times 3$
$3 ^ { 1 } \times 3 ^ { 1 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 ^ { 1 } \times 3 ^ { 1 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 3$
$3 ^ { 1 } \times 3 ^ { 1 } \times 3 ^ { 1 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 ^ { 1 } \times 3 ^ { 1 } \times 3 ^ { 1 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } }$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$3 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$ $ Find the sum $ $
$3 ^ { \color{#FF6800}{ 5 } }$
$3 ^ { 5 }$
Organize using the law of exponent
$\color{#FF6800}{ 3 } \times 3 \times 3 \times 3 \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 3 \times 3 \times 3 \times 3$
$3 ^ { 1 } \times \color{#FF6800}{ 3 } \times 3 \times 3 \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 ^ { 1 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 3 \times 3 \times 3$
$3 ^ { 1 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } \times 3 \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 ^ { 1 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 3 \times 3$
$3 ^ { 1 } \times 3 ^ { 1 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 ^ { 1 } \times 3 ^ { 1 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 3$
$3 ^ { 1 } \times 3 ^ { 1 } \times 3 ^ { 1 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 ^ { 1 } \times 3 ^ { 1 } \times 3 ^ { 1 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } }$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$3 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$ $ Find the sum $ $
$3 ^ { \color{#FF6800}{ 5 } }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
check-iconSearch by problem image
check-iconAsk 1:1 question to TOP class teachers
check-iconAI recommend problems and video lecture