# Calculator search results

Formula
Solve the equation
Graph
$y = 3 \left ( x - 5 \right )$
$y = 5 \left ( 3 - x \right )$
$x$-intercept
$\left ( 5 , 0 \right )$
$y$-intercept
$\left ( 0 , - 15 \right )$
$x$-intercept
$\left ( 3 , 0 \right )$
$y$-intercept
$\left ( 0 , 15 \right )$
$3 \left( x-5 \right) = 5 \left( 3-x \right)$
$x = \dfrac { 15 } { 4 }$
 Solve a solution to $x$
$\color{#FF6800}{ 3 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) = \color{#FF6800}{ 5 } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ x } \right )$
 Organize the expression 
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 15 } = \color{#FF6800}{ 15 } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x }$
$3 x - 15 = \color{#FF6800}{ 15 } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x }$
 Organize the expression 
$3 x - 15 = \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 15 }$
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 15 } = \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 15 }$
 Organize the expression 
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \color{#FF6800}{ x } = \color{#FF6800}{ 15 } \color{#FF6800}{ + } \color{#FF6800}{ 15 }$
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \color{#FF6800}{ x } = 15 + 15$
 Organize the expression 
$\color{#FF6800}{ 8 } \color{#FF6800}{ x } = 15 + 15$
$8 x = \color{#FF6800}{ 15 } \color{#FF6800}{ + } \color{#FF6800}{ 15 }$
 Add $15$ and $15$
$8 x = \color{#FF6800}{ 30 }$
$\color{#FF6800}{ 8 } \color{#FF6800}{ x } = \color{#FF6800}{ 30 }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 15 } { 4 } }$
 그래프 보기 
Graph
Solution search results