Solve the system of equations 2x-y=1; x+2y=8 graphically and find the coordinates of the points where corresponding lines intersect y-axis.
Symbol
Search
App Store
Google Play
Calculator search results
Solve the equation
Answer
See the solving process
Graph
See details
$y = 3 \left ( x - 5 \right )$
$y = 5 \left ( 3 - x \right )$
$x$Intercept
$\left ( 5 , 0 \right )$
$y$Intercept
$\left ( 0 , - 15 \right )$
$x$Intercept
$\left ( 3 , 0 \right )$
$y$Intercept
$\left ( 0 , 15 \right )$
$x = \dfrac { 15 } { 4 }$
$ $ Solve a solution to $ x$
$\color{#FF6800}{ 3 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) = \color{#FF6800}{ 5 } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ x } \right )$
$ $ Organize the expression $ $
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 15 } = \color{#FF6800}{ 15 } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x }$
$3 x - 15 = \color{#FF6800}{ 15 } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x }$
$ $ Organize the expression $ $
$3 x - 15 = \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 15 }$
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 15 } = \color{#FF6800}{ - } \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 15 }$
$ $ Organize the expression $ $
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \color{#FF6800}{ x } = \color{#FF6800}{ 15 } \color{#FF6800}{ + } \color{#FF6800}{ 15 }$
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \color{#FF6800}{ x } = 15 + 15$
$ $ Organize the expression $ $
$\color{#FF6800}{ 8 } \color{#FF6800}{ x } = 15 + 15$
$8 x = \color{#FF6800}{ 15 } \color{#FF6800}{ + } \color{#FF6800}{ 15 }$
$ $ Add $ 15 $ and $ 15$
$8 x = \color{#FF6800}{ 30 }$
$\color{#FF6800}{ 8 } \color{#FF6800}{ x } = \color{#FF6800}{ 30 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { \color{#FF6800}{ 15 } } { \color{#FF6800}{ 4 } } }$
Solution search results
If the sum of two consecutive numbers is $45$ and one number is $X$ .This statement in the form of equation $1s:$ $\left(1$ Point) $\right)$ $○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ $○sx+1ef\left(x+2$ $r1gnt\right)=145s$ $sx+1x=45s$
7th-9th grade
Algebra
Check solution
The is the statement of the Mean Value Theorem from your $te\times tb00k$ $Tneoren$ $m4.5$ $Ne8n$ Value Theorem Let f be continuous over $leclose$ interval $\left(a.b\right)aod$ $i$ $eo$ $xd$ $csnlc$ $\left(ab\right)$ $mmd$ exists at least one point cE $\left(a.b\right)$ $si1dhtba$ $f^{'}\left(c\right)=\dfrac {f\left(b\right)-f\left(a\right)} {b-a}$ What is the geometric interpretation of the conclusion of the theorem? O The tangent line to the graph of \(f\left(x\right)\) at $l\left(c1\right)$ is parallel to the secant line connecting \(\left(a,f\left(a\right)\right)\) and \(\left(b,f\left(b\right)\right)\). O The tangent line to the graph of $\left(f\left(lef\left(x\left(right\right)$ at \(c\) is the secant line connecting \(\left(a,f\left(a\right)\right)\) $ana$ \(\left(b,f\left(b\right)\right)\). O The tangent line to the graph $of$ $\left(f\left(leF\left(x\left(right\right)\left(\right)at1\left(c1\right)is$ perpendicular to the secant line connecting \(\left(a,f\left(a\right)\right)\) and A(\left(b,f\left(b\right)\right)\). O The tangent line to the graph of $\left(fleH\left(x\right)nght\right)\right)\right)$ $at$ $\left(c\right)\right)ishoizonta|$ $Tnere$ is more than one tangent line to the graph $0no$ $\left(flcf\left(x\right)night\right)\left($ $at1\left(c1\right)$
Calculus
Search count: 3,278
Check solution
$8$ $\left(1$ Point) $1\right)$ The\ reciprocal\\ $0+11\right)$ \left(\frac{2} $c\left(2\right)$ {5}\right)^0\ $\right)$ \ $1111s\right)$ $S$ $S1S$ $s3S$ $S4S$ $s2S$
7th-9th grade
Other
Search count: 4,895
Check solution
$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ $s1S$ $S-1S$ $s2S$ $s50s$
7th-9th grade
Other
Search count: 625
Check solution
$\right)c$ $c$ $co$ $3c3x$ $x$ Question 2 $1pts$ For each of the following questions, clearly select the ONE correct answer. Which of the following functions is increasing on the interval $\left(0,1\right)7$ $Ap$ $Ass$ Coe $-lnlef\left(x\right)ngh$ Col $x-ln\left(x\right)$ $x-1$ $Co$ $○y$ $xcos\left(2x\right)$ Diff Eva $O-\dfrac {3x} {x-1}-1trac\left(3x\right)\left(x-1\right)$ Fac Inte $○x$ $x$ $ln\left(x\right)$ Lim Seri Sim Solu $Ne\times t$ > Con $Con$ $Con$
Calculus
Check solution
Given the set of ordered pairs $\left(\left(-7.0\right),\left(-6,5\right),\left(-5,-3\right),\left(-1,2\right)$ $\left(1,6\right),\left(2,-2\right)$ $\left(5,3\right)\left(7,-8\right)\right)$ Find f(7)fAleft(7\right) O a O b -8 6. $5$
7th-9th grade
Algebra
Search count: 119
Check solution
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
App Store
Google Play
© 2021 Mathpresso Inc.
|
CEO Jongheun Lee, Yongjae Lee
|
17th Floor, WeWork Seolleung Station III, 428, Seolleung-ro, Gangnam-gu, Seoul
|
EMAIL support.en@mathpresso.com