Symbol

# Calculator search results

Formula
Solve the inequality
Graph
$3 \left ( 4 - x \right ) + 6 x \leq 9$
$3 \left ( 4 - x \right ) + 6 x \leq 9$
Solution of inequality
$x \leq - 1$
$3 \left( 4-x \right) +6x \leq 9$
$x \leq - 1$
 Solve a solution to $x$
$\color{#FF6800}{ 3 } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ x } \right ) + 6 x \leq 9$
 Multiply each term in parentheses by $3$
$\color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } + 6 x \leq 9$
$\color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } - 3 x + 6 x \leq 9$
 Multiply $3$ and $4$
$\color{#FF6800}{ 12 } - 3 x + 6 x \leq 9$
$12 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \leq 9$
 Calculate between similar terms 
$12 + \color{#FF6800}{ 3 } \color{#FF6800}{ x } \leq 9$
$\color{#FF6800}{ 12 } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \leq 9$
 Organize the expression 
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 12 } \leq 9$
$3 x \color{#FF6800}{ + } \color{#FF6800}{ 12 } \leq 9$
 Move the constant to the right side and change the sign 
$3 x \leq 9 \color{#FF6800}{ - } \color{#FF6800}{ 12 }$
$3 x \leq \color{#FF6800}{ 9 } \color{#FF6800}{ - } \color{#FF6800}{ 12 }$
 Subtract $12$ from $9$
$3 x \leq \color{#FF6800}{ - } \color{#FF6800}{ 3 }$
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } \leq \color{#FF6800}{ - } \color{#FF6800}{ 3 }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } \leq \color{#FF6800}{ - } \color{#FF6800}{ 1 }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture