Symbol

# Calculator search results

Formula
Expand the expression
Factorize the expression
$3 \left( 4-3x \right) +2 \left( x-1 \right)$
$- 7 x + 10$
Organize polynomials
$3 \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \right ) + 2 \left ( x - 1 \right )$
 Sort the polynomial expressions in descending order 
$3 \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) + 2 \left ( x - 1 \right )$
$\color{#FF6800}{ 3 } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right ) + 2 \left ( x - 1 \right )$
 Organize the expression with the distributive law 
$\color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ x } + \color{#FF6800}{ 12 } + 2 \left ( x - 1 \right )$
$- 9 x + 12 + \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
 Organize the expression with the distributive law 
$- 9 x + 12 + \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 12 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
 Organize the similar terms 
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 12 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x } + \left ( 12 - 2 \right )$
 Arrange the constant term 
$\color{#FF6800}{ - } \color{#FF6800}{ 7 } \color{#FF6800}{ x } + \left ( 12 - 2 \right )$
$- 7 x + \left ( \color{#FF6800}{ 12 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
 Arrange the constant term 
$- 7 x + \color{#FF6800}{ 10 }$
$- \left ( 7 x - 10 \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ 3 } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
 Expand the expression 
$\color{#FF6800}{ - } \color{#FF6800}{ 7 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 10 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 7 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 10 }$
 Bind the expressions with the common factor $- 1$
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ 7 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 10 } \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture