Symbol

# Calculator search results

Formula
Expand the expression
$3 \left( -3x+8 \right) + \left( 9x+7 \right)$
$31$
Organize polynomials
$\color{#FF6800}{ 3 } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \right ) + \left ( 9 x + 7 \right )$
 Organize the expression with the distributive law 
$\color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ x } + \color{#FF6800}{ 24 } + \left ( 9 x + 7 \right )$
$\color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 24 } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 9 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 7 } \right )$
 Get rid of unnecessary parentheses 
$\color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 24 } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 7 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 24 } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 7 }$
 Organize the similar terms 
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 24 } \color{#FF6800}{ + } \color{#FF6800}{ 7 } \right )$
$\left ( \color{#FF6800}{ - } \color{#FF6800}{ 9 } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \right ) \color{#FF6800}{ x } + \left ( 24 + 7 \right )$
 Organize the mononomial expression 
$\color{#FF6800}{ 0 } + \left ( 24 + 7 \right )$
$0 + \left ( \color{#FF6800}{ 24 } \color{#FF6800}{ + } \color{#FF6800}{ 7 } \right )$
 Arrange the constant term 
$0 + \color{#FF6800}{ 31 }$
$\color{#FF6800}{ 0 } + 31$
 0 does not change when you add or subtract 
$31$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture