# Calculator search results

Formula
Find the difference
$3 \dfrac{ 5 }{ 6 } -1 \dfrac{ 5 }{ 14 }$
$\dfrac { 52 } { 21 }$
Find the difference
$\color{#FF6800}{ 3 \dfrac { 5 } { 6 } } - 1 \dfrac { 5 } { 14 }$
 Convert mixed number into improper fraction 
$\color{#FF6800}{ \dfrac { 23 } { 6 } } - 1 \dfrac { 5 } { 14 }$
$\dfrac { 23 } { 6 } \color{#FF6800}{ - } \color{#FF6800}{ 1 \dfrac { 5 } { 14 } }$
 Convert mixed number into improper fraction 
$\dfrac { 23 } { 6 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 19 } { 14 } }$
$\dfrac { 23 } { \color{#FF6800}{ 6 } } - \dfrac { 19 } { \color{#FF6800}{ 14 } }$
 The smallest common multiple in denominator is $42$
$\dfrac { 23 } { \color{#FF6800}{ 6 } } - \dfrac { 19 } { \color{#FF6800}{ 14 } }$
$\dfrac { 23 } { 6 } - \dfrac { 19 } { 14 }$
 Multiply the denominator and the numerator so that the denominator is the smallest common multiple 
$\dfrac { 23 \times \color{#FF6800}{ 7 } } { 6 \times \color{#FF6800}{ 7 } } - \dfrac { 19 \times \color{#FF6800}{ 3 } } { 14 \times \color{#FF6800}{ 3 } }$
$\color{#FF6800}{ \dfrac { 23 \times 7 } { 6 \times 7 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 19 \times 3 } { 14 \times 3 } }$
 Organize the expression 
$\color{#FF6800}{ \dfrac { 161 } { 42 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 57 } { 42 } }$
$\color{#FF6800}{ \dfrac { 161 } { 42 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 57 } { 42 } }$
 Since the denominator is the same as $42$ , combine the fractions into one 
$\color{#FF6800}{ \dfrac { 161 - 57 } { 42 } }$
$\dfrac { \color{#FF6800}{ 161 } \color{#FF6800}{ - } \color{#FF6800}{ 57 } } { 42 }$
 Subtract $57$ from $161$
$\dfrac { \color{#FF6800}{ 104 } } { 42 }$
$\color{#FF6800}{ \dfrac { 104 } { 42 } }$
 Reduce the fraction to the lowest term 
$\color{#FF6800}{ \dfrac { 52 } { 21 } }$
Solution search results