Calculator search results

Formula
Find the sum or difference of the fractions
$3 \dfrac{ 1 }{ 2 } -2 \dfrac{ 3 }{ 8 } +1 \dfrac{ 1 }{ 6 }$
$\dfrac { 55 } { 24 }$
Find the sum or difference of the fractions
$\color{#FF6800}{ 3 \dfrac { 1 } { 2 } } - 2 \dfrac { 3 } { 8 } + 1 \dfrac { 1 } { 6 }$
 Convert mixed number into improper fraction 
$\color{#FF6800}{ \dfrac { 7 } { 2 } } - 2 \dfrac { 3 } { 8 } + 1 \dfrac { 1 } { 6 }$
$\dfrac { 7 } { 2 } \color{#FF6800}{ - } \color{#FF6800}{ 2 \dfrac { 3 } { 8 } } + 1 \dfrac { 1 } { 6 }$
 Convert mixed number into improper fraction 
$\dfrac { 7 } { 2 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 19 } { 8 } } + 1 \dfrac { 1 } { 6 }$
$\dfrac { 7 } { 2 } - \dfrac { 19 } { 8 } + \color{#FF6800}{ 1 \dfrac { 1 } { 6 } }$
 Convert mixed number into improper fraction 
$\dfrac { 7 } { 2 } - \dfrac { 19 } { 8 } + \color{#FF6800}{ \dfrac { 7 } { 6 } }$
$\dfrac { 7 } { \color{#FF6800}{ 2 } } - \dfrac { 19 } { \color{#FF6800}{ 8 } } + \dfrac { 7 } { \color{#FF6800}{ 6 } }$
 The smallest common multiple in denominator is $24$
$\dfrac { 7 } { \color{#FF6800}{ 2 } } - \dfrac { 19 } { \color{#FF6800}{ 8 } } + \dfrac { 7 } { \color{#FF6800}{ 6 } }$
$\dfrac { 7 } { 2 } - \dfrac { 19 } { 8 } + \dfrac { 7 } { 6 }$
 Multiply the denominator and the numerator so that the denominator is the smallest common multiple 
$\dfrac { 7 \times \color{#FF6800}{ 12 } } { 2 \times \color{#FF6800}{ 12 } } - \dfrac { 19 \times \color{#FF6800}{ 3 } } { 8 \times \color{#FF6800}{ 3 } } + \dfrac { 7 \times \color{#FF6800}{ 4 } } { 6 \times \color{#FF6800}{ 4 } }$
$\color{#FF6800}{ \dfrac { 7 \times 12 } { 2 \times 12 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 19 \times 3 } { 8 \times 3 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 7 \times 4 } { 6 \times 4 } }$
 Organize the expression 
$\color{#FF6800}{ \dfrac { 84 } { 24 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 57 } { 24 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 28 } { 24 } }$
$\color{#FF6800}{ \dfrac { 84 } { 24 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 57 } { 24 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 28 } { 24 } }$
 Since the denominator is the same as $24$ , combine the fractions into one 
$\color{#FF6800}{ \dfrac { 84 - 57 + 28 } { 24 } }$
$\dfrac { \color{#FF6800}{ 84 } \color{#FF6800}{ - } \color{#FF6800}{ 57 } \color{#FF6800}{ + } \color{#FF6800}{ 28 } } { 24 }$
 Calculate the sum or the difference 
$\dfrac { \color{#FF6800}{ 55 } } { 24 }$
Solution search results