Calculator search results

Formula
Find the sum or difference of the fractions
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
$3 \dfrac{ 1 }{ 2 } -2 \dfrac{ 3 }{ 8 } +1 \dfrac{ 1 }{ 6 }$
$\dfrac { 55 } { 24 }$
Find the sum or difference of the fractions
$\color{#FF6800}{ 3 \dfrac { 1 } { 2 } } - 2 \dfrac { 3 } { 8 } + 1 \dfrac { 1 } { 6 }$
$ $ Convert mixed number into improper fraction $ $
$\color{#FF6800}{ \dfrac { 7 } { 2 } } - 2 \dfrac { 3 } { 8 } + 1 \dfrac { 1 } { 6 }$
$\dfrac { 7 } { 2 } \color{#FF6800}{ - } \color{#FF6800}{ 2 \dfrac { 3 } { 8 } } + 1 \dfrac { 1 } { 6 }$
$ $ Convert mixed number into improper fraction $ $
$\dfrac { 7 } { 2 } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 19 } { 8 } } + 1 \dfrac { 1 } { 6 }$
$\dfrac { 7 } { 2 } - \dfrac { 19 } { 8 } + \color{#FF6800}{ 1 \dfrac { 1 } { 6 } }$
$ $ Convert mixed number into improper fraction $ $
$\dfrac { 7 } { 2 } - \dfrac { 19 } { 8 } + \color{#FF6800}{ \dfrac { 7 } { 6 } }$
$\dfrac { 7 } { \color{#FF6800}{ 2 } } - \dfrac { 19 } { \color{#FF6800}{ 8 } } + \dfrac { 7 } { \color{#FF6800}{ 6 } }$
$ $ The smallest common multiple in denominator is $ 24$
$\dfrac { 7 } { \color{#FF6800}{ 2 } } - \dfrac { 19 } { \color{#FF6800}{ 8 } } + \dfrac { 7 } { \color{#FF6800}{ 6 } }$
$\dfrac { 7 } { 2 } - \dfrac { 19 } { 8 } + \dfrac { 7 } { 6 }$
$ $ Multiply the denominator and the numerator so that the denominator is the smallest common multiple $ $
$\dfrac { 7 \times \color{#FF6800}{ 12 } } { 2 \times \color{#FF6800}{ 12 } } - \dfrac { 19 \times \color{#FF6800}{ 3 } } { 8 \times \color{#FF6800}{ 3 } } + \dfrac { 7 \times \color{#FF6800}{ 4 } } { 6 \times \color{#FF6800}{ 4 } }$
$\color{#FF6800}{ \dfrac { 7 \times 12 } { 2 \times 12 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 19 \times 3 } { 8 \times 3 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 7 \times 4 } { 6 \times 4 } }$
$ $ Organize the expression $ $
$\color{#FF6800}{ \dfrac { 84 } { 24 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 57 } { 24 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 28 } { 24 } }$
$\color{#FF6800}{ \dfrac { 84 } { 24 } } \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 57 } { 24 } } \color{#FF6800}{ + } \color{#FF6800}{ \dfrac { 28 } { 24 } }$
$ $ Since the denominator is the same as $ 24 $ , combine the fractions into one $ $
$\color{#FF6800}{ \dfrac { 84 - 57 + 28 } { 24 } }$
$\dfrac { \color{#FF6800}{ 84 } \color{#FF6800}{ - } \color{#FF6800}{ 57 } \color{#FF6800}{ + } \color{#FF6800}{ 28 } } { 24 }$
$ $ Calculate the sum or the difference $ $
$\dfrac { \color{#FF6800}{ 55 } } { 24 }$
Solution search results
search-thumbnail-$11.$ Question $11$ 
Solve the $:$ $folloMlng'$ $0<θ<90^{°}$ 
$\left(1\right)$ $2sin^{2}θ=1\right)$ $\left(rac\left(3\right)\left(2\right)\right)$ 
$\left(11\right)$ $3tan^{2}θ+2=3$ 
$\left(111\right)cos^{2}θ$ $11rac\left(1\right)\left(4\right)\right)=$ 
$c\left(1\right)\left(4\right)\right)=11113c\left(1\right)\left(2\right)\right)$
10th-13th grade
Trigonometry
search-thumbnail-Which of the following rational numbers are 
equivalent? 
$0Ptionsy$ 
A \frac{5}{6}, \frac{30}{36} 
B $s\sqrt{rac\left(} -2\right)\left(3\right)\sqrt{1rac} \sqrt{4\right)16\right)4} $ 
C $s\sqrt{11aC\left(} -4\right)1-7b,\sqrt{1rac\left(16\sqrt{35\right)9} } $ 
D \frac{1}{2},\frac{3}{8}
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo