# Calculator search results

Formula
Solve the equation
Graph
$y = 2 x - 2$
$y = 18 + 6 x$
$x$-intercept
$\left ( 1 , 0 \right )$
$y$-intercept
$\left ( 0 , - 2 \right )$
$x$-intercept
$\left ( - 3 , 0 \right )$
$y$-intercept
$\left ( 0 , 18 \right )$
$2x-2 = 18+6x$
$x = - 5$
 Solve a solution to $x$
$2 x - 2 = \color{#FF6800}{ 18 } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ x }$
 Organize the expression 
$2 x - 2 = \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 18 }$
$2 x - 2 = \color{#FF6800}{ 6 } \color{#FF6800}{ x } + 18$
 Move the variable to the left-hand side and change the symbol 
$2 x - 2 \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } = 18$
$2 x \color{#FF6800}{ - } \color{#FF6800}{ 2 } - 6 x = 18$
 Move the constant to the right side and change the sign 
$2 x - 6 x = 18 \color{#FF6800}{ + } \color{#FF6800}{ 2 }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } = 18 + 2$
 Organize the expression 
$\color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } = 18 + 2$
$- 4 x = \color{#FF6800}{ 18 } \color{#FF6800}{ + } \color{#FF6800}{ 2 }$
 Add $18$ and $2$
$- 4 x = \color{#FF6800}{ 20 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } = \color{#FF6800}{ 20 }$
 Change the sign of both sides of the equation 
$4 x = - 20$
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 20 }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 5 }$
 그래프 보기 
Graph
Solution search results
Algebra
Trigonometry