Symbol

# Calculator search results

Formula
Expand the expression
Factorize the expression
$2x+3y- \{ x- \left( x-3y \right) -4y \}$
$2 x + 4 y$
Organize polynomials
$2 x + 3 y - \left ( x \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ y } \right ) - 4 y \right )$
 Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses 
$2 x + 3 y - \left ( x \color{#FF6800}{ - } \color{#FF6800}{ x } + \color{#FF6800}{ 3 } \color{#FF6800}{ y } - 4 y \right )$
$2 x + 3 y - \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ y } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ y } \right )$
 Organize the similar terms 
$2 x + 3 y - \left ( \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ y } \right )$
$2 x + 3 y - \left ( \left ( \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } + \left ( 3 - 4 \right ) y \right )$
 Organize the mononomial expression 
$2 x + 3 y - \left ( \color{#FF6800}{ 0 } + \left ( 3 - 4 \right ) y \right )$
$2 x + 3 y - \left ( 0 + \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ y } \right )$
 Organize the mononomial expression 
$2 x + 3 y - \left ( 0 \color{#FF6800}{ - } \color{#FF6800}{ y } \right )$
$2 x + 3 y - \left ( \color{#FF6800}{ 0 } - y \right )$
 0 does not change when you add or subtract 
$2 x + 3 y - \left ( - y \right )$
$2 x + 3 y \color{#FF6800}{ - } \left ( \color{#FF6800}{ - } y \right )$
 Simplify Minus 
$2 x + 3 y + y$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ y }$
 Organize the similar terms 
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ y }$
$2 x + \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ y }$
 Arrange the constant term 
$2 x + \color{#FF6800}{ 4 } \color{#FF6800}{ y }$
$2 \left ( x + 2 y \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ y } \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ y } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ y } \right )$
 Expand the expression 
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ y }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ y }$
 Tie a common factor 
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ y } \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture