qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Solve the equation
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Graph
$2 x + 3 y = 16$
$x$Intercept
$\left ( 8 , 0 \right )$
$y$Intercept
$\left ( 0 , \dfrac { 16 } { 3 } \right )$
$2x+3y = 16$
$x = - \dfrac { 3 } { 2 } y + 8$
$ $ Solve a solution to $ x$
$2 x \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ y } = 16$
$ $ Move the rest of the expression except $ x $ term to the right side and replace the sign $ $
$2 x = 16 \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ y } \right )$
$2 x = \color{#FF6800}{ 16 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ y } \right )$
$ $ Organize the expression $ $
$2 x = \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 16 }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 16 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } = \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 16 } \right ) \color{#FF6800}{ \div } \color{#FF6800}{ 2 }$
$x = \left ( - 3 y + 16 \right ) \color{#FF6800}{ \div } \color{#FF6800}{ 2 }$
$ $ Convert division to multiplication $ $
$x = \left ( - 3 y + 16 \right ) \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 2 } }$
$x = \left ( \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 16 } \right ) \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 2 } }$
$ $ Multiply each term in parentheses by $ \dfrac { 1 } { 2 }$
$x = \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ y } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 16 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 2 } }$
$x = \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ y } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 2 } } + 16 \times \dfrac { 1 } { 2 }$
$ $ Simplify the expression $ $
$x = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 3 } { 2 } } \color{#FF6800}{ y } + 16 \times \dfrac { 1 } { 2 }$
$x = - \dfrac { 3 } { 2 } y + \color{#FF6800}{ 16 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 2 } }$
$ $ Calculate the product of rational numbers $ $
$x = - \dfrac { 3 } { 2 } y + \color{#FF6800}{ 8 }$
$y = - \dfrac { 2 } { 3 } x + \dfrac { 16 } { 3 }$
$ $ Solve a solution to $ y$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } + 3 y = 16$
$ $ Move the rest of the expression except $ y $ term to the right side and replace the sign $ $
$3 y = 16 \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \right )$
$3 y = \color{#FF6800}{ 16 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \right )$
$ $ Organize the expression $ $
$3 y = \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 16 }$
$\color{#FF6800}{ 3 } \color{#FF6800}{ y } = \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 16 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ y } = \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 16 } \right ) \color{#FF6800}{ \div } \color{#FF6800}{ 3 }$
$y = \left ( - 2 x + 16 \right ) \color{#FF6800}{ \div } \color{#FF6800}{ 3 }$
$ $ Convert division to multiplication $ $
$y = \left ( - 2 x + 16 \right ) \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 3 } }$
$y = \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 16 } \right ) \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 3 } }$
$ $ Multiply each term in parentheses by $ \dfrac { 1 } { 3 }$
$y = \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 3 } } \color{#FF6800}{ + } \color{#FF6800}{ 16 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 3 } }$
$y = \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 3 } } + 16 \times \dfrac { 1 } { 3 }$
$ $ Simplify the expression $ $
$y = \color{#FF6800}{ - } \color{#FF6800}{ \dfrac { 2 } { 3 } } \color{#FF6800}{ x } + 16 \times \dfrac { 1 } { 3 }$
$y = - \dfrac { 2 } { 3 } x + \color{#FF6800}{ 16 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 3 } }$
$ $ Calculate the product of rational numbers $ $
$y = - \dfrac { 2 } { 3 } x + \color{#FF6800}{ \dfrac { 16 } { 3 } }$
$ $ 그래프 보기 $ $
Linear function
Solution search results
search-thumbnail-If you were to solve the following system of equations by using a matrix, 
which of the following would be your coefficient matrix? 
$4x-y=16$ 
$2x+3y=-18$
10th-13th grade
Algebra
search-thumbnail-Solve: $x+3y=16$ 
$2x+3y=4$
10th-13th grade
English
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo