qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Solve the equation
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Graph
$2 x + 2 y = 6$
$x$Intercept
$\left ( 3 , 0 \right )$
$y$Intercept
$\left ( 0 , 3 \right )$
$2x+2y = 6$
$x = - y + 3$
$ $ Solve a solution to $ x$
$2 x \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ y } = 6$
$ $ Move the rest of the expression except $ x $ term to the right side and replace the sign $ $
$2 x = 6 \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ y } \right )$
$2 x = \color{#FF6800}{ 6 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ y } \right )$
$ $ Organize the expression $ $
$2 x = \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 6 }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 6 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } = \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \right ) \color{#FF6800}{ \div } \color{#FF6800}{ 2 }$
$x = \left ( - 2 y + 6 \right ) \color{#FF6800}{ \div } \color{#FF6800}{ 2 }$
$ $ Convert division to multiplication $ $
$x = \left ( - 2 y + 6 \right ) \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 2 } }$
$x = \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \right ) \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 2 } }$
$ $ Multiply each term in parentheses by $ \dfrac { 1 } { 2 }$
$x = \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 2 } }$
$x = \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 2 } } + 6 \times \dfrac { 1 } { 2 }$
$ $ Simplify the expression $ $
$x = \color{#FF6800}{ - } \color{#FF6800}{ 1 } \color{#FF6800}{ y } + 6 \times \dfrac { 1 } { 2 }$
$x = \color{#FF6800}{ - } \color{#FF6800}{ 1 } y + 6 \times \dfrac { 1 } { 2 }$
$ $ Multiplying any number by 1 does not change the value $ $
$x = - y + 6 \times \dfrac { 1 } { 2 }$
$x = - y + \color{#FF6800}{ 6 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 2 } }$
$ $ Calculate the product of rational numbers $ $
$x = - y + \color{#FF6800}{ 3 }$
$y = - x + 3$
$ $ Solve a solution to $ y$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } + 2 y = 6$
$ $ Move the rest of the expression except $ y $ term to the right side and replace the sign $ $
$2 y = 6 \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \right )$
$2 y = \color{#FF6800}{ 6 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \right )$
$ $ Organize the expression $ $
$2 y = \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ y } = \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ y } = \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \right ) \color{#FF6800}{ \div } \color{#FF6800}{ 2 }$
$y = \left ( - 2 x + 6 \right ) \color{#FF6800}{ \div } \color{#FF6800}{ 2 }$
$ $ Convert division to multiplication $ $
$y = \left ( - 2 x + 6 \right ) \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 2 } }$
$y = \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \right ) \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 2 } }$
$ $ Multiply each term in parentheses by $ \dfrac { 1 } { 2 }$
$y = \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 6 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 2 } }$
$y = \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 2 } } + 6 \times \dfrac { 1 } { 2 }$
$ $ Simplify the expression $ $
$y = \color{#FF6800}{ - } \color{#FF6800}{ 1 } \color{#FF6800}{ x } + 6 \times \dfrac { 1 } { 2 }$
$y = \color{#FF6800}{ - } \color{#FF6800}{ 1 } x + 6 \times \dfrac { 1 } { 2 }$
$ $ Multiplying any number by 1 does not change the value $ $
$y = - x + 6 \times \dfrac { 1 } { 2 }$
$y = - x + \color{#FF6800}{ 6 } \color{#FF6800}{ \times } \color{#FF6800}{ \dfrac { 1 } { 2 } }$
$ $ Calculate the product of rational numbers $ $
$y = - x + \color{#FF6800}{ 3 }$
$ $ 그래프 보기 $ $
Linear function
Solution search results
search-thumbnail-$1.$ $3x+3y=6$ 
$2x+2y=4$ 
$\dfrac {a} {d}=-$ 
$\dfrac {b} {e}=-$ 
$\dfrac {c} {f}=-=$
7th-9th grade
Algebra
search-thumbnail-$3x+3y=6$ 
$2x+2y=4$
7th-9th grade
Other
search-thumbnail-II. Keep Trying! Substitution and Elimination. $5$ 
the following Linear Equations by $3$ $4$ 
Solve $1$ $2$ 
$x+3y=10$ $x-y=-2$ $2x-y=-6$ $x+y=3$ $x+2y=18$ $2x+y=6$ $2x+y=7$ $x-2y=6$ $2x-2y=8$ $x+2y=4$
7th-9th grade
Other
search-thumbnail-$0$ Ø $3x+2y=6$ 
$2x-3y=17$
10th-13th grade
Other
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo