Calculator search results

Formula
Solve the equation
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Graph
$y = 2 x + 1$
$y = \dfrac { 1 } { 2 } x + 35$
$x$-intercept
$\left ( - \dfrac { 1 } { 2 } , 0 \right )$
$y$-intercept
$\left ( 0 , 1 \right )$
$x$-intercept
$\left ( - 70 , 0 \right )$
$y$-intercept
$\left ( 0 , 35 \right )$
$2x+1= \left( \dfrac{ 1 }{ 2 } \right) x+35$
$x = \dfrac { 68 } { 3 }$
$ $ Solve a solution to $ x$
$2 x + 1 = \color{#FF6800}{ \dfrac { 1 } { 2 } } \color{#FF6800}{ x } + 35$
$ $ Calculate the multiplication expression $ $
$2 x + 1 = \color{#FF6800}{ \dfrac { x } { 2 } } + 35$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } = \color{#FF6800}{ \dfrac { x } { 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 35 }$
$ $ Multiply both sides by the least common multiple for the denominators to eliminate the fraction $ $
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } = \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 70 }$
$4 x + 2 = \color{#FF6800}{ x } + 70$
$ $ Move the variable to the left-hand side and change the symbol $ $
$4 x + 2 \color{#FF6800}{ - } \color{#FF6800}{ x } = 70$
$4 x \color{#FF6800}{ + } \color{#FF6800}{ 2 } - x = 70$
$ $ Move the constant to the right side and change the sign $ $
$4 x - x = 70 \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ x } = 70 - 2$
$ $ Organize the expression $ $
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } = 70 - 2$
$3 x = \color{#FF6800}{ 70 } \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
$ $ Subtract $ 2 $ from $ 70$
$3 x = \color{#FF6800}{ 68 }$
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } = \color{#FF6800}{ 68 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 68 } { 3 } }$
$ $ 그래프 보기 $ $
Graph
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-Which of the following rational numbers are 
equivalent? 
$0Ptionsy$ 
A \frac{5}{6}, \frac{30}{36} 
B $s\sqrt{rac\left(} -2\right)\left(3\right)\sqrt{1rac} \sqrt{4\right)16\right)4} $ 
C $s\sqrt{11aC\left(} -4\right)1-7b,\sqrt{1rac\left(16\sqrt{35\right)9} } $ 
D \frac{1}{2},\frac{3}{8}
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo