qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Graph
$y = 2 x ^ { 3 } - 9 x ^ { 2 } - 25$
$y = 0$
$x$Intercept
$\left ( 5 , 0 \right )$
$y$Intercept
$\left ( 0 , - 25 \right )$
Derivative
$6 x ^ { 2 } - 18 x$
Seconde derivative
$12 x - 18$
Local Minimum
$\left ( 3 , - 52 \right )$
Local Maximum
$\left ( 0 , - 25 \right )$
Point of inflection
$\left ( \dfrac { 3 } { 2 } , - \dfrac { 77 } { 2 } \right )$
$2x ^{ 3 } -9x ^{ 2 } -25 = 0$
$ $ 그래프 보기 $ $
Graph
Solution search results
search-thumbnail-$27.$ The equation whose roots are multiplied by $3$ of those of $2x^{3}-3x^{2}+4x-5=0$ is 
$1\right)$ $2x^{3}-9x^{2}+36x-135=0$ $2\right)$ $2x^{3}-9x^{2}-36x+135=0$ 

$3\right)$ $x^{3}-9x^{2}+36x+135=0$ $4\right)$ $2x^{3}-9x^{2}+36x+135=0$
7th-9th grade
Algebra
search-thumbnail-A. List all the possible roots of the given polynomial equations. 
$1.$ $x^{3}-4x^{2}+2x-5=0$ 
$2$ $x^{3}-6x^{2}+3x+6=0$ 
$3.$ $x^{3}-x^{2}+8x-4=0$ 
$4.$ $2x^{3}+x^{2}-2x-4=0$ 
$5.$ $4x^{4}+16x^{3}-9x^{2}-16=0$
10th-13th grade
Other
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo