Symbol

Calculator search results

Formula
Expand the expression
Factorize the expression
$2x \left( x-4 \right) +x \left( 2-x \right)$
$x ^ { 2 } - 6 x$
Organize polynomials
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) + x \left ( 2 - x \right )$
 Organize the expression with the distributive law 
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } + x \left ( 2 - x \right )$
$2 x ^ { 2 } - 8 x + x \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ x } \right )$
 Sort the polynomial expressions in descending order 
$2 x ^ { 2 } - 8 x + x \left ( \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
$2 x ^ { 2 } - 8 x + \color{#FF6800}{ x } \left ( \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
 Organize the expression with the distributive law 
$2 x ^ { 2 } - 8 x \color{#FF6800}{ - } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 2 } \color{#FF6800}{ x }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x }$
 Organize the similar terms 
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x }$
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \left ( - 8 + 2 \right ) x$
 Organize the mononomial expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \left ( - 8 + 2 \right ) x$
$x ^ { 2 } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 8 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x }$
 Arrange the constant term 
$x ^ { 2 } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x }$
$x \left ( x - 6 \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ x } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ x } \right )$
 Expand the expression 
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x }$
$\color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x }$
 Bind the expressions with the common factor $x$
$\color{#FF6800}{ x } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture