# Calculator search results

Formula
Do prime factorization
Find the number of divisors
Find the cube root
List all divisors
Rewrite a number
$27$
$3 ^ { 3 }$
Do prime factorization
$\color{#FF6800}{ 27 }$
 Represents an integer as a product of decimal numbers 
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } }$
$4$
Find the number of divisors
$\color{#FF6800}{ 27 }$
 Represents an integer as a product of decimal numbers 
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } }$
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } }$
 Find the number of divisors using an exponent 
$\color{#FF6800}{ 4 }$
$3$
Find the cube root
$\color{#FF6800}{ 27 }$
 Present as the square root form 
$\sqrt[ \color{#FF6800}{ 3 } ]{ \color{#FF6800}{ 27 } }$
$\sqrt[ \color{#FF6800}{ 3 } ]{ \color{#FF6800}{ 27 } }$
 Organize the part that can be taken out of the radical sign inside the square root symbol 
$\color{#FF6800}{ 3 }$
$1 , 3 , 9 , 27$
Find all divisors
$\color{#FF6800}{ 27 }$
 Represents an integer as a product of decimal numbers 
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } }$
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } }$
 List divisors of factors 
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } }$
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } }$
 Calculate the product of all divisors 
$\color{#FF6800}{ 1 } , \color{#FF6800}{ 3 } , \color{#FF6800}{ 9 } , \color{#FF6800}{ 27 }$
$3 ^ { 3 }$
Rewrite in exponential format
$\color{#FF6800}{ 27 }$
 Write a number in exponential form with the base number, $3$
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 3 } }$
$2.7 \times 10 ^ { 1 }$
Rewrite in the scientific numeral system
$\color{#FF6800}{ 27 }$
 Rewrite in the scientific numeral system 
$\color{#FF6800}{ 2.7 } \color{#FF6800}{ \times } \color{#FF6800}{ 10 } ^ { \color{#FF6800}{ 1 } }$
Solution search results