Symbol

Calculator search results

Formula
Solve the equation
Graph
$y = 25 ^ { 2 x - 1 }$
$y = 5 ^ { x + 4 }$
$y$Intercept
$\left ( 0 , \dfrac { 1 } { 25 } \right )$
Asymptote
$y = 0$
$y$Intercept
$\left ( 0 , 625 \right )$
Asymptote
$y = 0$
$25 ^{ 2x-1 } = 5 ^{ x+4 }$
$x = 2$
Solve the equation
$\color{#FF6800}{ 25 } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } } = \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 } }$
 Solve the exponential equation (inequality) by unifying the bases of the exponents 
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) = \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) = x + 4$
 Multiply each term in parentheses by $2$
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } = x + 4$
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ x } - 2 = x + 4$
 Simplify the expression 
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } - 2 = x + 4$
$4 x - 2 = \color{#FF6800}{ x } + 4$
 Move the variable to the left-hand side and change the symbol 
$4 x - 2 \color{#FF6800}{ - } \color{#FF6800}{ x } = 4$
$4 x \color{#FF6800}{ - } \color{#FF6800}{ 2 } - x = 4$
 Move the constant to the right side and change the sign 
$4 x - x = 4 \color{#FF6800}{ + } \color{#FF6800}{ 2 }$
$\color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ x } = 4 + 2$
 Organize the expression 
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } = 4 + 2$
$3 x = \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 2 }$
 Add $4$ and $2$
$3 x = \color{#FF6800}{ 6 }$
$\color{#FF6800}{ 3 } \color{#FF6800}{ x } = \color{#FF6800}{ 6 }$
 Divide both sides by the same number 
$\color{#FF6800}{ x } = \color{#FF6800}{ 2 }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture