# Calculator search results

Formula
Multiply two numbers
Find the number of divisors
List all divisors
Do prime factorization
$25 \times 6$
$150$
Multiply two numbers
$\color{#FF6800}{ 25 } \color{#FF6800}{ \times } \color{#FF6800}{ 6 }$
 Multiply $25$ and $6$
$\color{#FF6800}{ 150 }$
$12$
Find the number of divisors
$\color{#FF6800}{ 25 } \color{#FF6800}{ \times } \color{#FF6800}{ 6 }$
 Do prime factorization 
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
 Find the number of divisors using an exponent 
$\color{#FF6800}{ 12 }$
$1 , 2 , 3 , 5 , 6 , 10 , 15 , 25 , 30 , 50 , 75 , 150$
Find all divisors
$\color{#FF6800}{ 25 } \color{#FF6800}{ \times } \color{#FF6800}{ 6 }$
 Do prime factorization 
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
 List divisors of factors 
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \\ \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \\ \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \\ \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \\ \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } }$
 Find all divisors by combining factors which is possible for the reduction of fraction 
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } }$
 Calculate the product of all divisors 
$\color{#FF6800}{ 1 } , \color{#FF6800}{ 2 } , \color{#FF6800}{ 3 } , \color{#FF6800}{ 5 } , \color{#FF6800}{ 6 } , \color{#FF6800}{ 10 } , \color{#FF6800}{ 15 } , \color{#FF6800}{ 25 } , \color{#FF6800}{ 30 } , \color{#FF6800}{ 50 } , \color{#FF6800}{ 75 } , \color{#FF6800}{ 150 }$
$5 ^ { 2 } \times 2 \times 3$
Organize using the law of exponent
$\color{#FF6800}{ 25 } \times 6$
 Represents an integer as a product of decimal numbers 
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \times 6$
$5 ^ { 2 } \times \color{#FF6800}{ 6 }$
 Represents an integer as a product of decimal numbers 
$5 ^ { 2 } \times \color{#FF6800}{ 2 } \times \color{#FF6800}{ 3 }$
Solution search results