qanda-logo
search-icon
Symbol
apple-logo
google-play-logo

Calculator search results

Formula
Multiply the numbers
Answer
circle-check-icon
Find the number of divisors
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
List all divisors
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
Do prime factorization
Answer
circle-check-icon
expand-arrow-icon
Organize using the law of exponent
Answer
circle-check-icon
expand-arrow-icon
$25 \times 25 \times 25 =$
$15625$
Multiply the numbers
$\color{#FF6800}{ 25 } \color{#FF6800}{ \times } \color{#FF6800}{ 25 } \times 25$
$ $ Multiply $ 25 $ and $ 25$
$\color{#FF6800}{ 625 } \times 25$
$\color{#FF6800}{ 625 } \color{#FF6800}{ \times } \color{#FF6800}{ 25 }$
$ $ Multiply $ 625 $ and $ 25$
$\color{#FF6800}{ 15625 }$
$7$
Find the number of divisors
$\color{#FF6800}{ 25 } \color{#FF6800}{ \times } \color{#FF6800}{ 25 } \color{#FF6800}{ \times } \color{#FF6800}{ 25 }$
$ $ Do prime factorization $ $
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } }$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } }$
$5 ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } }$
$ $ Find the sum $ $
$5 ^ { \color{#FF6800}{ 6 } }$
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 6 } }$
$ $ Find the number of divisors using an exponent $ $
$\color{#FF6800}{ 7 }$
$1 , 5 , 25 , 125 , 625 , 3125 , 15625$
Find all divisors
$\color{#FF6800}{ 25 } \color{#FF6800}{ \times } \color{#FF6800}{ 25 } \color{#FF6800}{ \times } \color{#FF6800}{ 25 }$
$ $ Do prime factorization $ $
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } }$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } }$
$5 ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } }$
$ $ Find the sum $ $
$5 ^ { \color{#FF6800}{ 6 } }$
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 6 } }$
$ $ List divisors of factors $ $
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 4 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 5 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 6 } }$
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 4 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 5 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 6 } }$
$ $ Calculate the product of all divisors $ $
$\color{#FF6800}{ 1 } , \color{#FF6800}{ 5 } , \color{#FF6800}{ 25 } , \color{#FF6800}{ 125 } , \color{#FF6800}{ 625 } , \color{#FF6800}{ 3125 } , \color{#FF6800}{ 15625 }$
$5 ^ { 6 }$
Organize using the law of exponent
$\color{#FF6800}{ 25 } \times 25 \times 25$
$ $ Represents an integer as a product of decimal numbers $ $
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \times 25 \times 25$
$5 ^ { 2 } \times \color{#FF6800}{ 25 } \times 25$
$ $ Represents an integer as a product of decimal numbers $ $
$5 ^ { 2 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \times 25$
$5 ^ { 2 } \times 5 ^ { 2 } \times \color{#FF6800}{ 25 }$
$ $ Represents an integer as a product of decimal numbers $ $
$5 ^ { 2 } \times 5 ^ { 2 } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \times \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } }$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } }$
$5 ^ { \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } }$
$ $ Find the sum $ $
$5 ^ { \color{#FF6800}{ 6 } }$
$25 ^ { 3 }$
Organize using the law of exponent
$\color{#FF6800}{ 25 } \times 25 \times 25$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$\color{#FF6800}{ 25 } ^ { \color{#FF6800}{ 1 } } \times 25 \times 25$
$25 ^ { 1 } \times \color{#FF6800}{ 25 } \times 25$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$25 ^ { 1 } \times \color{#FF6800}{ 25 } ^ { \color{#FF6800}{ 1 } } \times 25$
$25 ^ { 1 } \times 25 ^ { 1 } \times \color{#FF6800}{ 25 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$25 ^ { 1 } \times 25 ^ { 1 } \times \color{#FF6800}{ 25 } ^ { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ 25 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 25 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 25 } ^ { \color{#FF6800}{ 1 } }$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 25 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$25 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$ $ Find the sum $ $
$25 ^ { \color{#FF6800}{ 3 } }$
Solution search results
search-thumbnail-1. The standard form of a linear equation 7. Seven times a number is Thie
Multiple statement in the form of an equation is 1. The standard form of a linear equation 7. Seven times a number is 42. Thie (b) 7x 42 in one variable x is (a) x+ 7= 42 $\left(d\right)x-7=42$ (a) ax + b 0 (c) 7 = 42 (b) ax + bx + c = 0 (d) ax + bx + cx + dx +e = 0. 8. A number when divided by 5 gives 6. This statement in the form of an (c) ax+ bx + ex +d 0 Of the following, the linear equation in equation is 2. one variable x, is (a) x- 5 = 6 (b) $x+5=6$ x (b) -+ x-1 = 1 (d) 5x = 6. (0) = 6 (a) 4 4 (d) x + 2x +3 = 0. (c)+ 3 4 9. A number when subtracted from 40 3. The degree of the equation results into 15. This statement in the form of an equation is 2-2x + 1 x-3 is $x-40=15$ (a) 1 (b) 2 ((ac) ) $40-x=15$ $40+x=15$ ((b) d) $40x=15$ (c) 0 (d) 3. The statement 'on adding 10 in a 10. If 6 is added to 3 times of a number, it becomes 15. This statement in the form 4. number, the number becomes 20' in the of an equation is form of an equation is (a) x - 10 = 20 (b) $x+10=20$ (a) $3x+6=15$ (b) $3x-6=15$ (c) 10x 20 (d) 10 = 20. (c) $3x+15=6$ (d) $\dfrac {3x} {6}=15$ 5. If 9 is added to a number, it becomes 11. On subtracting 30 from two times a 25. This statement in the form of an number, we get 56. This statement in equation is the form of an equation is (a) x + 9 = 25 (b) x- 9 = 25 (a) $2x-30=56$ (b) $2x+30=56$ (c) 9x 25 (d) = 25. (c) $30-2x=56$ (d) $\dfrac {30} {2x}=56$ If 15 is subtracted from a number, it becomes- 5. This statement in the form 12. The root of the equation $z\div 4=-8is$ of an equation is (a) 3 (b) – 32 (a) $x+15=-5$ (b) $x-15=5$ (c) 12 (d) 4. (c) x+15 = 5 (d) $x-15=-5$
7th-9th grade
Algebra
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple-logo
google-play-logo