qanda-logo
search-icon
Symbol
apple-logo
google-play-logo

Calculator search results

Formula
Multiply two numbers
Answer
circle-check-icon
Find the number of divisors
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
Do prime factorization
Answer
circle-check-icon
Organize using the law of exponent
Answer
circle-check-icon
$24 \times 24$
$576$
Multiply two numbers
$\color{#FF6800}{ 24 } \color{#FF6800}{ \times } \color{#FF6800}{ 24 }$
$ $ Multiply $ 24 $ and $ 24$
$\color{#FF6800}{ 576 }$
$21$
Find the number of divisors
$\color{#FF6800}{ 24 } \color{#FF6800}{ \times } \color{#FF6800}{ 24 }$
$ $ Do prime factorization $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } \times 3 \times 3$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 3 } } \times 3 \times 3$
$2 ^ { \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 3 } } \times 3 \times 3$
$ $ Add $ 3 $ and $ 3$
$2 ^ { \color{#FF6800}{ 6 } } \times 3 \times 3$
$2 ^ { 6 } \times \color{#FF6800}{ 3 } \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 6 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 3$
$2 ^ { 6 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 6 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } }$
$2 ^ { 6 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } }$
$ $ Add the exponent as the base is the same $ $
$2 ^ { 6 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$2 ^ { 6 } \times 3 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$ $ Add $ 1 $ and $ 1$
$2 ^ { 6 } \times 3 ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 6 } } \color{#FF6800}{ \times } \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 2 } }$
$ $ Find the number of divisors using an exponent $ $
$\color{#FF6800}{ 21 }$
$2 ^ { 6 } \times 3 ^ { 2 }$
Organize using the law of exponent
$\color{#FF6800}{ 24 } \times 24$
$ $ Represents an integer as a product of decimal numbers $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } \times \color{#FF6800}{ 3 } \times 24$
$2 ^ { 3 } \times 3 \times \color{#FF6800}{ 24 }$
$ $ Represents an integer as a product of decimal numbers $ $
$2 ^ { 3 } \times 3 \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } \times \color{#FF6800}{ 3 }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } \times 3 \times 3$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 3 } } \times 3 \times 3$
$2 ^ { \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 3 } } \times 3 \times 3$
$ $ Add $ 3 $ and $ 3$
$2 ^ { \color{#FF6800}{ 6 } } \times 3 \times 3$
$2 ^ { 6 } \times \color{#FF6800}{ 3 } \times 3$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 6 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times 3$
$2 ^ { 6 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$2 ^ { 6 } \times 3 ^ { 1 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } }$
$2 ^ { 6 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } }$
$ $ Add the exponent as the base is the same $ $
$2 ^ { 6 } \times \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$2 ^ { 6 } \times 3 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$ $ Add $ 1 $ and $ 1$
$2 ^ { 6 } \times 3 ^ { \color{#FF6800}{ 2 } }$
$24 ^ { 2 }$
Organize using the law of exponent
$\color{#FF6800}{ 24 } \times 24$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$\color{#FF6800}{ 24 } ^ { \color{#FF6800}{ 1 } } \times 24$
$24 ^ { 1 } \times \color{#FF6800}{ 24 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$24 ^ { 1 } \times \color{#FF6800}{ 24 } ^ { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ 24 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 24 } ^ { \color{#FF6800}{ 1 } }$
$ $ Add the exponent as the base is the same $ $
$\color{#FF6800}{ 24 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$24 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$ $ Add $ 1 $ and $ 1$
$24 ^ { \color{#FF6800}{ 2 } }$
Solution search results
search-thumbnail-20 times 20
$20$ times $20$
1st-6th grade
Geometry
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple-logo
google-play-logo