# Calculator search results

Formula
Multiply two numbers
Find the number of divisors
List all divisors
Do prime factorization
$21 \times 7$
$147$
Multiply two numbers
$\color{#FF6800}{ 21 } \color{#FF6800}{ \times } \color{#FF6800}{ 7 }$
 Multiply $21$ and $7$
$\color{#FF6800}{ 147 }$
$6$
Find the number of divisors
$\color{#FF6800}{ 21 } \color{#FF6800}{ \times } \color{#FF6800}{ 7 }$
 Do prime factorization 
$\color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } \color{#FF6800}{ \times } \color{#FF6800}{ 7 }$
$3 \times \color{#FF6800}{ 7 } \times 7$
 If the exponent is omitted, the exponent of that term is equal to 1 
$3 \times \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } } \times 7$
$3 \times 7 ^ { 1 } \times \color{#FF6800}{ 7 }$
 If the exponent is omitted, the exponent of that term is equal to 1 
$3 \times 7 ^ { 1 } \times \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } }$
$3 \times \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } }$
 Add the exponent as the base is the same 
$3 \times \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$3 \times 7 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
 Add $1$ and $1$
$3 \times 7 ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } }$
 Find the number of divisors using an exponent 
$\color{#FF6800}{ 6 }$
$1 , 3 , 7 , 21 , 49 , 147$
Find all divisors
$\color{#FF6800}{ 21 } \color{#FF6800}{ \times } \color{#FF6800}{ 7 }$
 Do prime factorization 
$\color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } \color{#FF6800}{ \times } \color{#FF6800}{ 7 }$
$3 \times \color{#FF6800}{ 7 } \times 7$
 If the exponent is omitted, the exponent of that term is equal to 1 
$3 \times \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } } \times 7$
$3 \times 7 ^ { 1 } \times \color{#FF6800}{ 7 }$
 If the exponent is omitted, the exponent of that term is equal to 1 
$3 \times 7 ^ { 1 } \times \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } }$
$3 \times \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } }$
 Add the exponent as the base is the same 
$3 \times \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$3 \times 7 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
 Add $1$ and $1$
$3 \times 7 ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } }$
 List divisors of factors 
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \\ \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \\ \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } }$
 Find all divisors by combining factors which is possible for the reduction of fraction 
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } }$
 Calculate the product of all divisors 
$\color{#FF6800}{ 1 } , \color{#FF6800}{ 3 } , \color{#FF6800}{ 7 } , \color{#FF6800}{ 21 } , \color{#FF6800}{ 49 } , \color{#FF6800}{ 147 }$
$3 \times 7 ^ { 2 }$
Organize using the law of exponent
$\color{#FF6800}{ 21 } \times 7$
 Represents an integer as a product of decimal numbers 
$\color{#FF6800}{ 3 } \times \color{#FF6800}{ 7 } \times 7$
$3 \times \color{#FF6800}{ 7 } \times 7$
 If the exponent is omitted, the exponent of that term is equal to 1 
$3 \times \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } } \times 7$
$3 \times 7 ^ { 1 } \times \color{#FF6800}{ 7 }$
 If the exponent is omitted, the exponent of that term is equal to 1 
$3 \times 7 ^ { 1 } \times \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } }$
$3 \times \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } }$
 Add the exponent as the base is the same 
$3 \times \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$3 \times 7 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
 Add $1$ and $1$
$3 \times 7 ^ { \color{#FF6800}{ 2 } }$
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture