$\color{#FF6800}{ 21 } \color{#FF6800}{ \times } \color{#FF6800}{ 7 }$
$ $ Do prime factorization $ $
$\color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } \color{#FF6800}{ \times } \color{#FF6800}{ 7 }$
$3 \times \color{#FF6800}{ 7 } \times 7$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 \times \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } } \times 7$
$3 \times 7 ^ { 1 } \times \color{#FF6800}{ 7 }$
$ $ If the exponent is omitted, the exponent of that term is equal to 1 $ $
$3 \times 7 ^ { 1 } \times \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } }$
$3 \times \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } }$
$ $ Add the exponent as the base is the same $ $
$3 \times \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$3 \times 7 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$ $ Add $ 1 $ and $ 1$
$3 \times 7 ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 3 } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } }$
$ $ List divisors of factors $ $
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \\ \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \\ \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } }$
$ $ Find all divisors by combining factors which is possible for the reduction of fraction $ $
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 3 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 7 } ^ { \color{#FF6800}{ 2 } }$
$ $ Calculate the product of all divisors $ $
$\color{#FF6800}{ 1 } , \color{#FF6800}{ 3 } , \color{#FF6800}{ 7 } , \color{#FF6800}{ 21 } , \color{#FF6800}{ 49 } , \color{#FF6800}{ 147 }$