Calculator search results

Formula
Calculate the value
Answer
circle-check-icon
Find the number of divisors
Answer
circle-check-icon
expand-arrow-icon
List all divisors
Answer
circle-check-icon
Do prime factorization
Answer
circle-check-icon
$205 ^{ 2 }$
$42025$
Calculate the value
$\color{#FF6800}{ 205 } ^ { \color{#FF6800}{ 2 } }$
$ $ Calculate power $ $
$\color{#FF6800}{ 42025 }$
$9$
Find the number of divisors
$\color{#FF6800}{ 205 } ^ { 2 }$
$ $ Represents an integer as a product of decimal numbers $ $
$\left ( \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 41 } \right ) ^ { 2 }$
$\left ( \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 41 } \right ) ^ { \color{#FF6800}{ 2 } }$
$ $ If the base consists of products of two or more numbers, change to the product of each power $ $
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 41 } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 41 } ^ { \color{#FF6800}{ 2 } }$
$ $ Find the number of divisors using an exponent $ $
$\color{#FF6800}{ 9 }$
$1 , 5 , 25 , 41 , 205 , 1025 , 1681 , 8405 , 42025$
Find all divisors
$\color{#FF6800}{ 205 } ^ { 2 }$
$ $ Represents an integer as a product of decimal numbers $ $
$\left ( \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 41 } \right ) ^ { 2 }$
$\left ( \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 41 } \right ) ^ { \color{#FF6800}{ 2 } }$
$ $ If the base consists of products of two or more numbers, change to the product of each power $ $
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 41 } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 41 } ^ { \color{#FF6800}{ 2 } }$
$ $ List divisors of factors $ $
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \\ \color{#FF6800}{ 41 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 41 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 41 } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \\ \color{#FF6800}{ 41 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 41 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 41 } ^ { \color{#FF6800}{ 2 } }$
$ $ Find all divisors by combining factors which is possible for the reduction of fraction $ $
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 41 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 41 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 41 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 41 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 41 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 41 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 41 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 41 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 41 } ^ { \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 41 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 41 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 0 } } \color{#FF6800}{ \times } \color{#FF6800}{ 41 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 41 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 41 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 1 } } \color{#FF6800}{ \times } \color{#FF6800}{ 41 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 41 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 41 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 41 } ^ { \color{#FF6800}{ 2 } }$
$ $ Calculate the product of all divisors $ $
$\color{#FF6800}{ 1 } , \color{#FF6800}{ 5 } , \color{#FF6800}{ 25 } , \color{#FF6800}{ 41 } , \color{#FF6800}{ 205 } , \color{#FF6800}{ 1025 } , \color{#FF6800}{ 1681 } , \color{#FF6800}{ 8405 } , \color{#FF6800}{ 42025 }$
$5 ^ { 2 } \times 41 ^ { 2 }$
Organize using the law of exponent
$\color{#FF6800}{ 205 } ^ { 2 }$
$ $ Represents an integer as a product of decimal numbers $ $
$\left ( \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 41 } \right ) ^ { 2 }$
$\left ( \color{#FF6800}{ 5 } \color{#FF6800}{ \times } \color{#FF6800}{ 41 } \right ) ^ { \color{#FF6800}{ 2 } }$
$ $ If the base consists of products of two or more numbers, change to the product of each power $ $
$\color{#FF6800}{ 5 } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ \times } \color{#FF6800}{ 41 } ^ { \color{#FF6800}{ 2 } }$
Solution search results
search-thumbnail-$'$ 
C. Simplify the following using the Laws of exponents. 
16. $\left(\dfrac {m} {n}\right)^{2}$ $21$ $\left(\dfrac {6x^{3}y^{6}} {2xy}\right)$ 
$17$ $\left(3x^{2}y^{3}\right)^{2}$ %3D $22$ $3m^{3}0-4m^{4}$ 
$18.-\left(5x\right)\left(3x^{3}\right)$ $23$ $x^{-4}$ 
19. $\left(\dfrac {-5} {2y}\right)^{0}$ $24.\dfrac {X} {y}$ $\dfrac {x-z} {y^{-7}}$ 
$20$ $5^{0}$ $\left(2x\right)^{.3}$ $25.$ $\left(3ab^{2}\right)^{-1}$
7th-9th grade
Algebra
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo