Calculator search results

Formula
Calculate the value
$20- \left( -2 \right) ^{ 3 } \div 4 \times \left( -2 \right)$
$16$
Calculate the value
$20 - \left ( - 2 \right ) ^ { 3 } \times \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \div 4$
 If the exponent is omitted, the exponent of that term is equal to 1 
$20 - \left ( - 2 \right ) ^ { 3 } \times \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \right ) \div 4$
$20 \color{#FF6800}{ - } \left ( - 2 \right ) ^ { 3 } \times \left ( \color{#FF6800}{ - } 2 ^ { 1 } \right ) \div 4$
 Since negative numbers are multiplied by an even number, remove the (-) sign 
$20 + \left ( - 2 \right ) ^ { 3 } \times 2 ^ { 1 } \div 4$
$20 + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) ^ { \color{#FF6800}{ 3 } } \times 2 ^ { 1 } \div 4$
 Move the (-) sign forward as it does not disappear if the (-) sign is powered to an odd number of times 
$20 \color{#FF6800}{ - } 2 ^ { 3 } \times 2 ^ { 1 } \div 4$
$20 \color{#FF6800}{ - } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \div 4$
 Add the exponent as the base is the same 
$20 \color{#FF6800}{ - } \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \div 4$
$20 - 2 ^ { \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } } \div 4$
 Add $3$ and $1$
$20 - 2 ^ { \color{#FF6800}{ 4 } } \div 4$
$20 - \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 4 } } \div 4$
 Calculate power 
$20 - \color{#FF6800}{ 16 } \div 4$
$20 \color{#FF6800}{ - } \color{#FF6800}{ 16 } \color{#FF6800}{ \div } \color{#FF6800}{ 4 }$
 Divide $16$ by $4$
$20 \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
$\color{#FF6800}{ 20 } \color{#FF6800}{ - } \color{#FF6800}{ 4 }$
 Subtract $4$ from $20$
$\color{#FF6800}{ 16 }$
Solution search results