Calculator search results
Formula
Convert decimals to fractions
Answer
See the solving process
$2.7 \dot{ 3 } \dot{ 5 }$
$\dfrac { 1354 } { 495 }$
Convert the repeating decimal number to a fraction
$\color{#FF6800}{ 2.7 \dot{ 3 } \dot{ 5 } }$
$ $ Set the repeating decimal number to x $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 2.7 \dot{ 3 } \dot{ 5 } }$
$\color{#FF6800}{ x } = \color{#FF6800}{ 2.7 \dot{ 3 } \dot{ 5 } }$
$ $ Multiply both sides by an appropriate power of 10 to make two expressions with the same part of the prime number $ $
$\begin{cases} \color{#FF6800}{ 1000 } \color{#FF6800}{ x } = \color{#FF6800}{ 2735. \dot{ 3 } \dot{ 5 } } \\ \color{#FF6800}{ 10 } \color{#FF6800}{ x } = \color{#FF6800}{ 27. \dot{ 3 } \dot{ 5 } } \end{cases}$
$\begin{cases} \color{#FF6800}{ 1000 } \color{#FF6800}{ x } = \color{#FF6800}{ 2735. \dot{ 3 } \dot{ 5 } } \\ \color{#FF6800}{ 10 } \color{#FF6800}{ x } = \color{#FF6800}{ 27. \dot{ 3 } \dot{ 5 } } \end{cases}$
$ $ Since the prime number part of the right side of the two expressions is the same, only the integer part remains $ $
$\color{#FF6800}{ 990 } \color{#FF6800}{ x } = \color{#FF6800}{ 2708 }$
$\color{#FF6800}{ 990 } \color{#FF6800}{ x } = \color{#FF6800}{ 2708 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ \dfrac { 1354 } { 495 } }$
Solution search results
7th-9th grade
Other
Check solution
10th-13th grade
Other
Check solution
10th-13th grade
Algebra
Check solution
10th-13th grade
Other
Check solution
7th-9th grade
Other
Check solution
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture