Symbol

# Calculator search results

Formula
Expand the expression
Factorize the expression
$2+3 \{ 6x-2 \left( 5-4x \right) \}$
$42 x - 28$
Organize polynomials
$2 + 3 \left ( 6 x - 2 \left ( \color{#FF6800}{ 5 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \right ) \right )$
 Sort the polynomial expressions in descending order 
$2 + 3 \left ( 6 x - 2 \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \right ) \right )$
$2 + 3 \left ( 6 x \color{#FF6800}{ - } \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \right ) \right )$
 Organize the expression with the distributive law 
$2 + 3 \left ( 6 x + \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 10 } \right )$
$2 + 3 \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 10 } \right )$
 Organize the similar terms 
$2 + 3 \left ( \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 10 } \right )$
$2 + 3 \left ( \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 8 } \right ) \color{#FF6800}{ x } - 10 \right )$
 Arrange the constant term 
$2 + 3 \left ( \color{#FF6800}{ 14 } \color{#FF6800}{ x } - 10 \right )$
$2 + \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ 14 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 10 } \right )$
 Organize the expression with the distributive law 
$2 + \color{#FF6800}{ 42 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 30 }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 42 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 30 }$
 Organize the similar terms 
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 30 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 42 } \color{#FF6800}{ x }$
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 30 } \right ) + 42 x$
 Arrange the constant term 
$\color{#FF6800}{ - } \color{#FF6800}{ 28 } + 42 x$
$\color{#FF6800}{ - } \color{#FF6800}{ 28 } \color{#FF6800}{ + } \color{#FF6800}{ 42 } \color{#FF6800}{ x }$
 Sort the polynomial expressions in descending order 
$\color{#FF6800}{ 42 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 28 }$
$14 \left ( 3 x - 2 \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ 2 } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 5 } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \right ) \right )$
 Expand the expression 
$\color{#FF6800}{ 42 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 28 }$
$\color{#FF6800}{ 42 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 28 }$
 Bind the expressions with the common factor $14$
$\color{#FF6800}{ 14 } \left ( \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture