qanda-logo
apple logogoogle play logo

Calculator search results

Formula
Solve the equation
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
Graph
$y = 2 ^ { \log _{ 8 } { \left( x \right) } }$
$y = 9$
Asymptote
$y = 0$
$2 ^{ \log_{ 8 } {\left( x \right)} } = 9$
$x = 729$
Solve the equation
$\color{#FF6800}{ 2 } ^ { \log _{ \color{#FF6800}{ 8 } } { \left( \color{#FF6800}{ x } \right) } } = \color{#FF6800}{ 9 }$
$ $ Solve an exponential equation (inequality) by taking the logarithm on both sides $ $
$\log _{ \color{#FF6800}{ 8 } } { \left( \color{#FF6800}{ x } \right) } = \log _{ \color{#FF6800}{ 2 } } { \left( \color{#FF6800}{ 9 } \right) }$
$\log _{ \color{#FF6800}{ 8 } } { \left( \color{#FF6800}{ x } \right) } = \log _{ \color{#FF6800}{ 2 } } { \left( \color{#FF6800}{ 9 } \right) }$
$ $ Solve the equation $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 729 }$
$ $ 그래프 보기 $ $
Graph
Solution search results
search-thumbnail-$\bar{012-1-22} $ 
$log _{2}3>log _{3}11$ 
$1023$ 
$I$ $r=2$ $lo9r$ $\left(r+1\right)=10$ 
$1f$ $log _{8\left(}\dfrac {8} {x^{2}}\right)=3\left(log _{8}x\right)^{2}$ then sum of the solutions is $\dfrac {17} {8}$ 
$og8^{1+log _{8}2+log _{8}3}=log _{8}\left(1+2+3\right)$
10th-13th grade
Other
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo