Symbol

# Calculator search results

Formula
Multiply the numbers
Answer
Find the number of divisors
Answer
List all divisors
Answer
Do prime factorization
Answer
Organize using the law of exponent
Answer
$2 \times 2 \times 2 \times 2 \times 2 \times 2 =$
$64$
Multiply the numbers
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \times 2 \times 2 \times 2 \times 2$
 Multiply $2$ and $2$
$\color{#FF6800}{ 4 } \times 2 \times 2 \times 2 \times 2$
$\color{#FF6800}{ 4 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \times 2 \times 2 \times 2$
 Multiply $4$ and $2$
$\color{#FF6800}{ 8 } \times 2 \times 2 \times 2$
$\color{#FF6800}{ 8 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \times 2 \times 2$
 Multiply $8$ and $2$
$\color{#FF6800}{ 16 } \times 2 \times 2$
$\color{#FF6800}{ 16 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \times 2$
 Multiply $16$ and $2$
$\color{#FF6800}{ 32 } \times 2$
$\color{#FF6800}{ 32 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 }$
 Multiply $32$ and $2$
$\color{#FF6800}{ 64 }$
$7$
Find the number of divisors
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 }$
 Do prime factorization 
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 }$
$\color{#FF6800}{ 2 } \times 2 \times 2 \times 2 \times 2 \times 2$
 If the exponent is omitted, the exponent of that term is equal to 1 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 2 \times 2 \times 2 \times 2$
$2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 2 \times 2 \times 2 \times 2$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 2 \times 2 \times 2$
$2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 2 \times 2 \times 2$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 2 \times 2$
$2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 2 \times 2$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 2$
$2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 2$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2$
$2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 }$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } }$
 Add the exponent as the base is the same 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$2 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
 Find the sum 
$2 ^ { \color{#FF6800}{ 6 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 6 } }$
 Find the number of divisors using an exponent 
$\color{#FF6800}{ 7 }$
$1 , 2 , 4 , 8 , 16 , 32 , 64$
Find all divisors
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 }$
 Do prime factorization 
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 2 }$
$\color{#FF6800}{ 2 } \times 2 \times 2 \times 2 \times 2 \times 2$
 If the exponent is omitted, the exponent of that term is equal to 1 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 2 \times 2 \times 2 \times 2$
$2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 2 \times 2 \times 2 \times 2$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 2 \times 2 \times 2$
$2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 2 \times 2 \times 2$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 2 \times 2$
$2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 2 \times 2$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 2$
$2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 2$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2$
$2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 }$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } }$
 Add the exponent as the base is the same 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$2 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
 Find the sum 
$2 ^ { \color{#FF6800}{ 6 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 6 } }$
 List divisors of factors 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 4 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 5 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 6 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 0 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 2 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 3 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 4 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 5 } } , \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 6 } }$
 Calculate the product of all divisors 
$\color{#FF6800}{ 1 } , \color{#FF6800}{ 2 } , \color{#FF6800}{ 4 } , \color{#FF6800}{ 8 } , \color{#FF6800}{ 16 } , \color{#FF6800}{ 32 } , \color{#FF6800}{ 64 }$
$2 ^ { 6 }$
Organize using the law of exponent
$\color{#FF6800}{ 2 } \times 2 \times 2 \times 2 \times 2 \times 2$
 If the exponent is omitted, the exponent of that term is equal to 1 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 2 \times 2 \times 2 \times 2$
$2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 2 \times 2 \times 2 \times 2$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 2 \times 2 \times 2$
$2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 2 \times 2 \times 2$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 2 \times 2$
$2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 2 \times 2$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 2$
$2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 2$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2$
$2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 }$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } }$
 Add the exponent as the base is the same 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$2 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
 Find the sum 
$2 ^ { \color{#FF6800}{ 6 } }$
$2 ^ { 6 }$
Organize using the law of exponent
$\color{#FF6800}{ 2 } \times 2 \times 2 \times 2 \times 2 \times 2$
 If the exponent is omitted, the exponent of that term is equal to 1 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 2 \times 2 \times 2 \times 2$
$2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 2 \times 2 \times 2 \times 2$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 2 \times 2 \times 2$
$2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 2 \times 2 \times 2$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 2 \times 2$
$2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 2 \times 2$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2 \times 2$
$2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } \times 2$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times 2$
$2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 }$
 If the exponent is omitted, the exponent of that term is equal to 1 
$2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times 2 ^ { 1 } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } }$
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } } \times \color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } }$
 Add the exponent as the base is the same 
$\color{#FF6800}{ 2 } ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
$2 ^ { \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } }$
 Find the sum 
$2 ^ { \color{#FF6800}{ 6 } }$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture