Calculator search results

Formula
Calculate the value
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
$2 \sqrt{ 3 } \times \sqrt{ 6 } +3 \sqrt{ 2 } \left( \sqrt{ 2 } -1 \right) - \dfrac{ 6 }{ \sqrt{ 2 } }$
$6$
Calculate the value
$\color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } \sqrt{ \color{#FF6800}{ 6 } } + 3 \sqrt{ 2 } \left ( \sqrt{ 2 } - 1 \right ) - \dfrac { 6 } { \sqrt{ 2 } }$
$ $ Simplify the expression $ $
$\color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 2 } } + 3 \sqrt{ 2 } \left ( \sqrt{ 2 } - 1 \right ) - \dfrac { 6 } { \sqrt{ 2 } }$
$6 \sqrt{ 2 } + \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 2 } } \left ( \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) - \dfrac { 6 } { \sqrt{ 2 } }$
$ $ Expand the expression to calculate the value $ $
$6 \sqrt{ 2 } + \color{#FF6800}{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 2 } } - \dfrac { 6 } { \sqrt{ 2 } }$
$6 \sqrt{ 2 } + 6 - 3 \sqrt{ 2 } - \color{#FF6800}{ \dfrac { 6 } { \sqrt{ 2 } } }$
$ $ Calculate the expression $ $
$6 \sqrt{ 2 } + 6 - 3 \sqrt{ 2 } - \left ( \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 2 } } \right )$
$6 \sqrt{ 2 } + 6 - 3 \sqrt{ 2 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 2 } } \right )$
$ $ Get rid of unnecessary parentheses $ $
$6 \sqrt{ 2 } + 6 - 3 \sqrt{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 2 } } + 6 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 2 } }$
$ $ Calculate between similar terms $ $
$\color{#FF6800}{ 0 } \sqrt{ \color{#FF6800}{ 2 } } + 6$
$\color{#FF6800}{ 0 } \sqrt{ 2 } + 6$
$ $ If you multiply a number by 0, it becomes 0 $ $
$\color{#FF6800}{ 0 } + 6$
$\color{#FF6800}{ 0 } + 6$
$ $ 0 does not change when you add or subtract $ $
$6$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-The rationalizing factor of \sqrt{23} is 
$°$ $Options^{°}$ $0$ 
A 24 
23 
C \sqrt{23} 
D None of these
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo