Symbol

# Calculator search results

Formula
Calculate the value
$2 \sqrt{ 3 } \times \sqrt{ 6 } +3 \sqrt{ 2 } \left( \sqrt{ 2 } -1 \right) - \dfrac{ 6 }{ \sqrt{ 2 } }$
$6$
Calculate the value
$\color{#FF6800}{ 2 } \sqrt{ \color{#FF6800}{ 3 } } \sqrt{ \color{#FF6800}{ 6 } } + 3 \sqrt{ 2 } \left ( \sqrt{ 2 } - 1 \right ) - \dfrac { 6 } { \sqrt{ 2 } }$
 Simplify the expression 
$\color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 2 } } + 3 \sqrt{ 2 } \left ( \sqrt{ 2 } - 1 \right ) - \dfrac { 6 } { \sqrt{ 2 } }$
$6 \sqrt{ 2 } + \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 2 } } \left ( \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) - \dfrac { 6 } { \sqrt{ 2 } }$
 Expand the expression to calculate the value 
$6 \sqrt{ 2 } + \color{#FF6800}{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 2 } } - \dfrac { 6 } { \sqrt{ 2 } }$
$6 \sqrt{ 2 } + 6 - 3 \sqrt{ 2 } - \color{#FF6800}{ \dfrac { 6 } { \sqrt{ 2 } } }$
 Calculate the expression 
$6 \sqrt{ 2 } + 6 - 3 \sqrt{ 2 } - \left ( \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 2 } } \right )$
$6 \sqrt{ 2 } + 6 - 3 \sqrt{ 2 } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 2 } } \right )$
 Get rid of unnecessary parentheses 
$6 \sqrt{ 2 } + 6 - 3 \sqrt{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 2 } }$
$\color{#FF6800}{ 6 } \sqrt{ \color{#FF6800}{ 2 } } + 6 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \sqrt{ \color{#FF6800}{ 2 } }$
 Calculate between similar terms 
$\color{#FF6800}{ 0 } \sqrt{ \color{#FF6800}{ 2 } } + 6$
$\color{#FF6800}{ 0 } \sqrt{ 2 } + 6$
 If you multiply a number by 0, it becomes 0 
$\color{#FF6800}{ 0 } + 6$
$\color{#FF6800}{ 0 } + 6$
 0 does not change when you add or subtract 
$6$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture