Symbol

# Calculator search results

Formula
Expand the expression
Factorize the expression
$2 \left( x-y \right) + \left( a+3b \right) \left( x-y \right)$
$\left ( a + 3 b + 2 \right ) x + \left ( - a - 3 b - 2 \right ) y$
Organize polynomials
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) + \left ( a + 3 b \right ) \left ( x - y \right )$
 Organize the expression with the distributive law 
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y } + \left ( a + 3 b \right ) \left ( x - y \right )$
$2 x - 2 y + \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ b } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right )$
 Organize the expression with the distributive law 
$2 x - 2 y + \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ b } \right ) \color{#FF6800}{ x } + \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ b } \right ) \color{#FF6800}{ y }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ y } \color{#FF6800}{ + } \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ b } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ b } \right ) \color{#FF6800}{ y }$
 Organize the similar terms 
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ + } \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ b } \right ) \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ b } \right ) \right ) \color{#FF6800}{ y }$
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ + } \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ b } \right ) \right ) \color{#FF6800}{ x } + \left ( - 2 + \left ( - a - 3 b \right ) \right ) y$
 Arrange the constant term 
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x } + \left ( - 2 + \left ( - a - 3 b \right ) \right ) y$
$\left ( a + 3 b + 2 \right ) x + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ b } \right ) \right ) \color{#FF6800}{ y }$
 Arrange the constant term 
$\left ( a + 3 b + 2 \right ) x + \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ y }$
$\left ( x - y \right ) \left ( a + 3 b + 2 \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) \color{#FF6800}{ + } \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ b } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right )$
 Expand the expression 
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ y }$
$\left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ a } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ b } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ y }$
 Do factorization 
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ y } \right ) \left ( \color{#FF6800}{ a } \color{#FF6800}{ + } \color{#FF6800}{ 3 } \color{#FF6800}{ b } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \right )$
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture