Calculator search results

Formula
Expand the expression
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Factorize the expression
Answer
circle-check-icon
expand-arrow-icon
$2 \left( x-3 \right) ^{ 2 } - \left( 2x+5 \right) \left( x-2 \right)$
$- 13 x + 28$
Organize polynomials
$2 \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) ^ { \color{#FF6800}{ 2 } } - \left ( 2 x + 5 \right ) \left ( x - 2 \right )$
$ $ Expand the binomial expression $ $
$2 \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \right ) - \left ( 2 x + 5 \right ) \left ( x - 2 \right )$
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \right ) - \left ( 2 x + 5 \right ) \left ( x - 2 \right )$
$ $ Organize the expression with the distributive law $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ x } + \color{#FF6800}{ 18 } - \left ( 2 x + 5 \right ) \left ( x - 2 \right )$
$2 x ^ { 2 } - 12 x + 18 \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \right ) \left ( x - 2 \right )$
$ $ Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses $ $
$2 x ^ { 2 } - 12 x + 18 + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) \left ( x - 2 \right )$
$2 x ^ { 2 } - 12 x + 18 + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
$ $ Organize the expression with the distributive law $ $
$2 x ^ { 2 } - 12 x + 18 \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } + \color{#FF6800}{ 10 }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 18 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 10 }$
$ $ Organize the similar terms $ $
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 18 } \color{#FF6800}{ + } \color{#FF6800}{ 10 } \right )$
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \left ( - 12 - 1 \right ) x + \left ( 18 + 10 \right )$
$ $ Organize the mononomial expression $ $
$\color{#FF6800}{ 0 } + \left ( - 12 - 1 \right ) x + \left ( 18 + 10 \right )$
$0 + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } + \left ( 18 + 10 \right )$
$ $ Arrange the constant term $ $
$0 \color{#FF6800}{ - } \color{#FF6800}{ 13 } \color{#FF6800}{ x } + \left ( 18 + 10 \right )$
$0 - 13 x + \left ( \color{#FF6800}{ 18 } \color{#FF6800}{ + } \color{#FF6800}{ 10 } \right )$
$ $ Arrange the constant term $ $
$0 - 13 x + \color{#FF6800}{ 28 }$
$\color{#FF6800}{ 0 } - 13 x + 28$
$ $ 0 does not change when you add or subtract $ $
$- 13 x + 28$
$- \left ( 13 x - 28 \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
$ $ Expand the expression $ $
$\color{#FF6800}{ - } \color{#FF6800}{ 13 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 28 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 13 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 28 }$
$ $ Bind the expressions with the common factor $ - 1$
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ 13 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 28 } \right )$
Solution search results
search-thumbnail-If the sum of two consecutive 
numbers is $45$ and one number is $X$ 
.This statement in the form of 
equation $1s:$ 
$\left(1$ Point) $\right)$ 
$○5x+1$ $1eft\left(x+1$ $r1gnt\right)=45s$ 
$○sx+1ef\left(x+2$ $r1gnt\right)=145s$ 
$sx+1x=45s$
7th-9th grade
Algebra
search-thumbnail-$s|ef\left(-1n$ $\left($ }\right)^{50}\ $\right)$ \ | | is\ equal\ to\ $S$ 
$s1S$ 
$S-1S$ 
$s2S$ 
$s50s$
7th-9th grade
Other
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple logogoogle play logo