$2 \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) ^ { \color{#FF6800}{ 2 } } - \left ( 2 x + 5 \right ) \left ( x - 2 \right )$
$ $ Expand the binomial expression $ $
$2 \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \right ) - \left ( 2 x + 5 \right ) \left ( x - 2 \right )$
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \right ) - \left ( 2 x + 5 \right ) \left ( x - 2 \right )$
$ $ Organize the expression with the distributive law $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ x } + \color{#FF6800}{ 18 } - \left ( 2 x + 5 \right ) \left ( x - 2 \right )$
$2 x ^ { 2 } - 12 x + 18 \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \right ) \left ( x - 2 \right )$
$ $ Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses $ $
$2 x ^ { 2 } - 12 x + 18 + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) \left ( x - 2 \right )$
$2 x ^ { 2 } - 12 x + 18 + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
$ $ Organize the expression with the distributive law $ $
$2 x ^ { 2 } - 12 x + 18 \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } + \color{#FF6800}{ 10 }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 18 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 10 }$
$ $ Organize the similar terms $ $
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 18 } \color{#FF6800}{ + } \color{#FF6800}{ 10 } \right )$
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \left ( - 12 - 1 \right ) x + \left ( 18 + 10 \right )$
$ $ Organize the mononomial expression $ $
$\color{#FF6800}{ 0 } + \left ( - 12 - 1 \right ) x + \left ( 18 + 10 \right )$
$0 + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } + \left ( 18 + 10 \right )$
$ $ Arrange the constant term $ $
$0 \color{#FF6800}{ - } \color{#FF6800}{ 13 } \color{#FF6800}{ x } + \left ( 18 + 10 \right )$
$0 - 13 x + \left ( \color{#FF6800}{ 18 } \color{#FF6800}{ + } \color{#FF6800}{ 10 } \right )$
$ $ Arrange the constant term $ $
$0 - 13 x + \color{#FF6800}{ 28 }$
$\color{#FF6800}{ 0 } - 13 x + 28$
$ $ 0 does not change when you add or subtract $ $
$- 13 x + 28$