# Calculator search results

Formula
Expand the expression
Factorize the expression
$2 \left( x-3 \right) ^{ 2 } - \left( 2x+5 \right) \left( x-2 \right)$
$- 13 x + 28$
Organize polynomials
$2 \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) ^ { \color{#FF6800}{ 2 } } - \left ( 2 x + 5 \right ) \left ( x - 2 \right )$
 Expand the binomial expression 
$2 \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \right ) - \left ( 2 x + 5 \right ) \left ( x - 2 \right )$
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 9 } \right ) - \left ( 2 x + 5 \right ) \left ( x - 2 \right )$
 Organize the expression with the distributive law 
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ x } + \color{#FF6800}{ 18 } - \left ( 2 x + 5 \right ) \left ( x - 2 \right )$
$2 x ^ { 2 } - 12 x + 18 \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \right ) \left ( x - 2 \right )$
 Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses 
$2 x ^ { 2 } - 12 x + 18 + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) \left ( x - 2 \right )$
$2 x ^ { 2 } - 12 x + 18 + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 5 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
 Organize the expression with the distributive law 
$2 x ^ { 2 } - 12 x + 18 \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } + \color{#FF6800}{ 10 }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 18 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 10 }$
 Organize the similar terms 
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 18 } \color{#FF6800}{ + } \color{#FF6800}{ 10 } \right )$
$\left ( \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right ) \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \left ( - 12 - 1 \right ) x + \left ( 18 + 10 \right )$
 Organize the mononomial expression 
$\color{#FF6800}{ 0 } + \left ( - 12 - 1 \right ) x + \left ( 18 + 10 \right )$
$0 + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } + \left ( 18 + 10 \right )$
 Arrange the constant term 
$0 \color{#FF6800}{ - } \color{#FF6800}{ 13 } \color{#FF6800}{ x } + \left ( 18 + 10 \right )$
$0 - 13 x + \left ( \color{#FF6800}{ 18 } \color{#FF6800}{ + } \color{#FF6800}{ 10 } \right )$
 Arrange the constant term 
$0 - 13 x + \color{#FF6800}{ 28 }$
$\color{#FF6800}{ 0 } - 13 x + 28$
 0 does not change when you add or subtract 
$- 13 x + 28$
$- \left ( 13 x - 28 \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 5 } \right ) \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } \right )$
 Expand the expression 
$\color{#FF6800}{ - } \color{#FF6800}{ 13 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 28 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 13 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 28 }$
 Bind the expressions with the common factor $- 1$
$\color{#FF6800}{ - } \left ( \color{#FF6800}{ 13 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 28 } \right )$
Solution search results