# Calculator search results

Formula
Judge the identity Solve the equation Graph
$y = 2 \left ( x - 1 \right )$
$y = 2 x - 2$
$x$-intercept
$\left ( 1 , 0 \right )$
$y$-intercept
$\left ( 0 , - 2 \right )$
$x$-intercept
$\left ( 1 , 0 \right )$
$y$-intercept
$\left ( 0 , - 2 \right )$
$2 \left( x-1 \right) = 2x-2$
 TRUE 
Judge the identity
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) = 2 x - 2$
 Multiply each term in parentheses by $2$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } = 2 x - 2$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } = \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
 Since the values to calculate for all terms are equal, this expression is an identity 
 TRUE 
 There are countless solutions 
Solve the equation
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) = 2 x - 2$
 Multiply each term in parentheses by $2$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } = 2 x - 2$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } = \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
 Since both sides are the same, this equation is true regardless of the variable 
 There are countless solutions 
 그래프 보기 
Graph
Have you found the solution you wanted?
Try again