Calculator search results
Formula
Judge the identity
Answer
See the solving process
Solve the equation
Answer
See the solving process
Graph
See details
$y = 2 \left ( x - 1 \right )$
$y = 2 x - 2$
$x$-intercept
$\left ( 1 , 0 \right )$
$y$-intercept
$\left ( 0 , - 2 \right )$
$x$-intercept
$\left ( 1 , 0 \right )$
$y$-intercept
$\left ( 0 , - 2 \right )$
$2 \left( x-1 \right) = 2x-2$
$ $ TRUE $ $
Judge the identity
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) = 2 x - 2$
$ $ Multiply each term in parentheses by $ 2$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } = 2 x - 2$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } = \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
$ $ Since the values to calculate for all terms are equal, this expression is an identity $ $
$ $ TRUE $ $
$ $ There are countless solutions $ $
Solve the equation
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) = 2 x - 2$
$ $ Multiply each term in parentheses by $ 2$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } = 2 x - 2$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 } = \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
$ $ Since both sides are the same, this equation is true regardless of the variable $ $
$ $ There are countless solutions $ $
$ $ 그래프 보기 $ $
Graph
Solution search results
7th-9th grade
Algebra
Check solution
7th-9th grade
Other
Check solution
Calculus
Check solution
Calculus
Check solution
Other
Check solution
Other
Check solution
Have you found the solution you wanted?
Try again
Try more features at QANDA!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture