# Calculator search results

Formula
Organize by substituting the expression
Expand the expression
Factorize the expression
$2 \left( x+1 \right) ^{ 2 } -3 \left( x+1 \right) +1$
$x \left ( 2 x + 1 \right )$
Substitute and transform it into the quadratic expression to arrange an equation
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
 Substitute $x + 1$ with $t$
$\color{#FF6800}{ 2 } \color{#FF6800}{ t } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ t } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ t } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ t } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
 Do factorization 
$\left ( \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
$\left ( \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
 Substitute $t$ with $x + 1$
$\left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
$\left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( 2 \left ( x + 1 \right ) - 1 \right )$
 Get rid of unnecessary parentheses 
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( 2 \left ( x + 1 \right ) - 1 \right )$
$\left ( x \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( 2 \left ( x + 1 \right ) - 1 \right )$
 Eliminate opponent number 
$x \left ( 2 \left ( x + 1 \right ) - 1 \right )$
$x \left ( \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
 Do factorization 
$x \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
$2 x ^ { 2 } + x$
Organize polynomials
$2 \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } } - 3 \left ( x + 1 \right ) + 1$
 Expand the binomial expression 
$2 \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) - 3 \left ( x + 1 \right ) + 1$
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) - 3 \left ( x + 1 \right ) + 1$
 Organize the expression with the distributive law 
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 4 } \color{#FF6800}{ x } + \color{#FF6800}{ 2 } - 3 \left ( x + 1 \right ) + 1$
$2 x ^ { 2 } + 4 x + 2 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) + 1$
 Organize the expression with the distributive law 
$2 x ^ { 2 } + 4 x + 2 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } + 1$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
 Organize the similar terms 
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
$2 x ^ { 2 } + \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ x } + \left ( 2 - 3 + 1 \right )$
 Organize the mononomial expression 
$2 x ^ { 2 } + \color{#FF6800}{ x } + \left ( 2 - 3 + 1 \right )$
$2 x ^ { 2 } + x + \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
 Arrange the constant term 
$2 x ^ { 2 } + x + \color{#FF6800}{ 0 }$
$2 x ^ { 2 } + x \color{#FF6800}{ + } \color{#FF6800}{ 0 }$
 0 does not change when you add or subtract 
$2 x ^ { 2 } + x$
$x \left ( 2 x + 1 \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
 Expand the expression 
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ x }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ x }$
 Bind the expressions with the common factor $x$
$\color{#FF6800}{ x } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
Solution search results