qanda-logo
search-icon
Symbol
apple-logo
google-play-logo

Calculator search results

Formula
Organize by substituting the expression
Answer
circle-check-icon
Expand the expression
Answer
circle-check-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
expand-arrow-icon
Factorize the expression
Answer
circle-check-icon
expand-arrow-icon
$2 \left( x+1 \right) ^{ 2 } -3 \left( x+1 \right) +1$
$x \left ( 2 x + 1 \right )$
Substitute and transform it into the quadratic expression to arrange an equation
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$ $ Substitute $ x + 1 $ with $ t$
$\color{#FF6800}{ 2 } \color{#FF6800}{ t } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ t } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ t } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ t } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$ $ Do factorization $ $
$\left ( \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
$\left ( \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ t } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
$ $ Substitute $ t $ with $ x + 1$
$\left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
$\left ( \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( 2 \left ( x + 1 \right ) - 1 \right )$
$ $ Get rid of unnecessary parentheses $ $
$\left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( 2 \left ( x + 1 \right ) - 1 \right )$
$\left ( x \color{#FF6800}{ + } \color{#FF6800}{ 1 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \left ( 2 \left ( x + 1 \right ) - 1 \right )$
$ $ Eliminate opponent number $ $
$x \left ( 2 \left ( x + 1 \right ) - 1 \right )$
$x \left ( \color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right )$
$ $ Do factorization $ $
$x \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
$2 x ^ { 2 } + x$
Organize polynomials
$2 \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } } - 3 \left ( x + 1 \right ) + 1$
$ $ Expand the binomial expression $ $
$2 \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) - 3 \left ( x + 1 \right ) + 1$
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) - 3 \left ( x + 1 \right ) + 1$
$ $ Organize the expression with the distributive law $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } + \color{#FF6800}{ 4 } \color{#FF6800}{ x } + \color{#FF6800}{ 2 } - 3 \left ( x + 1 \right ) + 1$
$2 x ^ { 2 } + 4 x + 2 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) + 1$
$ $ Organize the expression with the distributive law $ $
$2 x ^ { 2 } + 4 x + 2 \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } + 1$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$ $ Organize the similar terms $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
$2 x ^ { 2 } + \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) \color{#FF6800}{ x } + \left ( 2 - 3 + 1 \right )$
$ $ Organize the mononomial expression $ $
$2 x ^ { 2 } + \color{#FF6800}{ x } + \left ( 2 - 3 + 1 \right )$
$2 x ^ { 2 } + x + \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
$ $ Arrange the constant term $ $
$2 x ^ { 2 } + x + \color{#FF6800}{ 0 }$
$2 x ^ { 2 } + x \color{#FF6800}{ + } \color{#FF6800}{ 0 }$
$ $ 0 does not change when you add or subtract $ $
$2 x ^ { 2 } + x$
$x \left ( 2 x + 1 \right )$
Arrange the expression in the form of factorization..
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \left ( \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ + } \color{#FF6800}{ 1 }$
$ $ Expand the expression $ $
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ x }$
$\color{#FF6800}{ 2 } \color{#FF6800}{ x } ^ { \color{#FF6800}{ 2 } } \color{#FF6800}{ + } \color{#FF6800}{ x }$
$ $ Bind the expressions with the common factor $ x$
$\color{#FF6800}{ x } \left ( \color{#FF6800}{ 2 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 1 } \right )$
Solution search results
Have you found the solution you wanted?
Try again
Try more features at Qanda!
Search by problem image
Ask 1:1 question to TOP class teachers
AI recommend problems and video lecture
apple-logo
google-play-logo