# Calculator search results

Formula
Expand the expression
$2 \left( 5x-3 \right) - \left( x-4 \right)$
$9 x - 2$
Organize polynomials
$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 5 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 3 } \right ) - \left ( x - 4 \right )$
 Organize the expression with the distributive law 
$\color{#FF6800}{ 10 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 6 } - \left ( x - 4 \right )$
$10 x - 6 \color{#FF6800}{ - } \left ( \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 4 } \right )$
 Change the symbol of each term in parentheses when there is a (-) symbol in front of parentheses 
$10 x - 6 \color{#FF6800}{ - } \color{#FF6800}{ x } + \color{#FF6800}{ 4 }$
$\color{#FF6800}{ 10 } \color{#FF6800}{ x } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ - } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 4 }$
 Organize the similar terms 
$\left ( \color{#FF6800}{ 10 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } \color{#FF6800}{ + } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right )$
$\left ( \color{#FF6800}{ 10 } \color{#FF6800}{ - } \color{#FF6800}{ 1 } \right ) \color{#FF6800}{ x } + \left ( - 6 + 4 \right )$
 Arrange the constant term 
$\color{#FF6800}{ 9 } \color{#FF6800}{ x } + \left ( - 6 + 4 \right )$
$9 x + \left ( \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ + } \color{#FF6800}{ 4 } \right )$
 Arrange the constant term 
$9 x \color{#FF6800}{ - } \color{#FF6800}{ 2 }$
Solution search results