$\color{#FF6800}{ 2 } \left ( \color{#FF6800}{ 4 } \color{#FF6800}{ - } \color{#FF6800}{ 6 } \color{#FF6800}{ x } \right ) = - 16$
$ $ Multiply each term in parentheses by $ 2$
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } \color{#FF6800}{ + } \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 6 } \right ) \color{#FF6800}{ x } = - 16$
$\color{#FF6800}{ 2 } \color{#FF6800}{ \times } \color{#FF6800}{ 4 } + 2 \times \left ( - 6 \right ) x = - 16$
$ $ Multiply $ 2 $ and $ 4$
$\color{#FF6800}{ 8 } + 2 \times \left ( - 6 \right ) x = - 16$
$8 + \color{#FF6800}{ 2 } \color{#FF6800}{ \times } \left ( \color{#FF6800}{ - } \color{#FF6800}{ 6 } \right ) \color{#FF6800}{ x } = - 16$
$ $ Simplify the expression $ $
$8 \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ x } = - 16$
$\color{#FF6800}{ 8 } \color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ x } = - 16$
$ $ Organize the expression $ $
$\color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ x } \color{#FF6800}{ + } \color{#FF6800}{ 8 } = - 16$
$- 12 x \color{#FF6800}{ + } \color{#FF6800}{ 8 } = - 16$
$ $ Move the constant to the right side and change the sign $ $
$- 12 x = - 16 \color{#FF6800}{ - } \color{#FF6800}{ 8 }$
$- 12 x = \color{#FF6800}{ - } \color{#FF6800}{ 16 } \color{#FF6800}{ - } \color{#FF6800}{ 8 }$
$ $ Find the sum of the negative numbers $ $
$- 12 x = \color{#FF6800}{ - } \color{#FF6800}{ 24 }$
$\color{#FF6800}{ - } \color{#FF6800}{ 12 } \color{#FF6800}{ x } = \color{#FF6800}{ - } \color{#FF6800}{ 24 }$
$ $ Change the sign of both sides of the equation $ $
$12 x = 24$
$\color{#FF6800}{ 12 } \color{#FF6800}{ x } = \color{#FF6800}{ 24 }$
$ $ Divide both sides by the same number $ $
$\color{#FF6800}{ x } = \color{#FF6800}{ 2 }$